mirror of
https://github.com/kubescape/kubescape.git
synced 2026-02-14 18:09:55 +00:00
Implement Phases 1-3 of the performance optimization plan to address issue #1793 - reduce CPU and memory consumption for system-constrained environments. Phase 1 - OPA Module Caching: - Add compiledModules cache to OPAProcessor with thread-safe access - Cache compiled OPA rules to eliminate redundant compilation - Reuse compiled modules with double-checked locking pattern - Expected CPU savings: 30-40% Phase 2 - Map Pre-sizing: - Add estimateClusterSize() to calculate resource count - Pre-size AllResources, ResourcesResult, and related maps - Reduce memory reallocations and GC pressure - Expected memory savings: 10-20% Phase 3 - Set-based Deduplication: - Add thread-safe StringSet utility in core/pkg/utils - Replace O(n) slices.Contains() with O(1) map operations - Use StringSet for image scanning and related resources deduplication - 100% test coverage for new utility - Expected CPU savings: 5-10% for large clusters Full optimization plan documented in optimization-plan.md Related: #1793 Signed-off-by: Matthias Bertschy <matthias.bertschy@gmail.com>
748 lines
23 KiB
Markdown
748 lines
23 KiB
Markdown
# Kubescape CPU/Memory Optimization Plan
|
||
|
||
**Issue:** #1793 - High CPU and Memory Usage on System-Constrained Environments
|
||
**Date:** February 3, 2026
|
||
**Root Cause Analysis:** Completed
|
||
**Proposed Solution:** Combined optimization approach across multiple components
|
||
|
||
---
|
||
|
||
## Executive Summary
|
||
|
||
Investigation into issue #1793 revealed that the original worker pool proposal addressed the symptoms but not the root causes. The actual sources of resource exhaustion are:
|
||
|
||
- **Memory:** Unbounded data structures loading entire cluster state into memory
|
||
- **CPU:** Repeated expensive operations (OPA compilation) and nested loop complexity
|
||
|
||
This document outlines a phased approach to reduce memory usage by 40-60% and CPU usage by 30-50%.
|
||
|
||
---
|
||
|
||
## Root Cause Analysis
|
||
|
||
### Memory Hotspots
|
||
|
||
1. **AllResources Map** (`core/cautils/datastructures.go:53`)
|
||
- Loads ALL Kubernetes resources into memory at once
|
||
- No pre-sizing causes reallocations
|
||
- Contains every pod, deployment, service, etc. in cluster
|
||
- **Impact:** Hundreds of MBs to several GBs for large clusters
|
||
|
||
2. **ResourcesResult Map** (`core/cautils/datastructures.go:54`)
|
||
- Stores scan results for every resource
|
||
- Grows dynamically without capacity hints
|
||
- **Impact:** Proportional to resources scanned
|
||
|
||
3. **Temporary Data Structures**
|
||
- Nested loops create temporary slices in `getKubernetesObjects`
|
||
- Repeated allocation per rule evaluation
|
||
- **Impact:** Memory churn and GC pressure
|
||
|
||
### CPU Hotspots
|
||
|
||
1. **OPA Module Compilation** (`core/pkg/opaprocessor/processorhandler.go:324-330`)
|
||
- Comment explicitly states: *"OPA module compilation is the most resource-intensive operation"*
|
||
- Compiles EVERY rule from scratch (no caching)
|
||
- Typical scan: ~100 controls × 5 rules = 500+ compilations
|
||
- **Impact:** High CPU, repeated compilation overhead
|
||
|
||
2. **6-Level Nested Loops** (`core/pkg/opaprocessor/processorhandlerutils.go:136-167`)
|
||
- Creates temporary data structures for each rule
|
||
- Iterates all matched resources multiple times
|
||
- **Impact:** O(n×m×...) complexity
|
||
|
||
3. **O(n) Slice Operations**
|
||
- `slices.Contains()` for deduplication in image scanning
|
||
- `RelatedResourcesIDs` slice growth with O(n) membership checks
|
||
- **Impact:** Degraded performance with larger datasets
|
||
|
||
### Codebase Evidence
|
||
|
||
The team is already aware of this issue, with internal documentation acknowledging the problem:
|
||
|
||
```go
|
||
// isLargeCluster returns true if the cluster size is larger than the largeClusterSize
|
||
// This code is a workaround for large clusters. The final solution will be to scan resources individually
|
||
// Source: core/pkg/opaprocessor/processorhandlerutils.go:279
|
||
```
|
||
|
||
---
|
||
|
||
## Proposed Solutions: Six-Phase Implementation
|
||
|
||
### Phase 1: OPA Module Caching
|
||
|
||
**Objective:** Eliminate redundant rule compilations
|
||
|
||
**Files Modified:**
|
||
- `core/pkg/opaprocessor/processorhandler.go`
|
||
- `core/pkg/opaprocessor/processorhandler_test.go`
|
||
|
||
**Changes:**
|
||
```go
|
||
type OPAProcessor struct {
|
||
// existing fields...
|
||
compiledModules map[string]*ast.Compiler
|
||
compiledMu sync.RWMutex
|
||
}
|
||
|
||
func (opap *OPAProcessor) getCompiledRule(ctx context.Context, rule reporthandling.Rule, modules map[string]string) (*ast.Compiler, error) {
|
||
// Check cache with read lock
|
||
cacheKey := rule.Name + "|" + rule.Rule
|
||
opap.compiledMu.RLock()
|
||
if compiled, ok := opap.compiledModules[cacheKey]; ok {
|
||
opap.compiledMu.RUnlock()
|
||
return compiled, nil
|
||
}
|
||
opap.compiledMu.RUnlock()
|
||
|
||
// Compile new module with write lock
|
||
opap.compiledMu.Lock()
|
||
defer opap.compiledMu.Unlock()
|
||
|
||
// Double-check pattern (cache might have been filled)
|
||
if compiled, ok := opap.compiledModules[cacheKey]; ok {
|
||
return compiled, nil
|
||
}
|
||
|
||
compiled, err := ast.CompileModulesWithOpt(modules, ast.CompileOpts{
|
||
EnablePrintStatements: opap.printEnabled,
|
||
ParserOptions: ast.ParserOptions{RegoVersion: ast.RegoV0},
|
||
})
|
||
if err != nil {
|
||
return nil, fmt.Errorf("failed to compile rule '%s': %w", rule.Name, err)
|
||
}
|
||
|
||
opap.compiledModules[cacheKey] = compiled
|
||
return compiled, nil
|
||
}
|
||
```
|
||
|
||
**Integration Point:** Replace direct compilation call in `runRegoOnK8s(:338` with cached retrieval
|
||
|
||
**Testing:**
|
||
- Unit test: Verify cache hit for identical rules
|
||
- Unit test: Verify cache miss for different rules
|
||
- Integration test: Measure scan time before/after
|
||
|
||
**Expected Savings:** 30-40% CPU reduction
|
||
|
||
**Risk:** Low - caching is a well-known pattern, minimal behavior change
|
||
|
||
**Dependencies:** None
|
||
|
||
---
|
||
|
||
### Phase 2: Map Pre-sizing
|
||
|
||
**Objective:** Reduce memory allocations and fragmentation
|
||
|
||
**Files Modified:**
|
||
- `core/cautils/datastructures.go`
|
||
- `core/cautils/datastructures_test.go`
|
||
- `core/pkg/resourcehandler/handlerpullresources.go`
|
||
- `core/pkg/resourcehandler/k8sresources.go`
|
||
|
||
**Changes:**
|
||
|
||
1. Update constructor to pre-size maps (cluster size estimated internally):
|
||
```go
|
||
func NewOPASessionObj(ctx context.Context, frameworks []reporthandling.Framework, k8sResources K8SResources, scanInfo *ScanInfo) *OPASessionObj {
|
||
clusterSize := estimateClusterSize(k8sResources)
|
||
if clusterSize < 100 {
|
||
clusterSize = 100
|
||
}
|
||
return &OPASessionObj{
|
||
AllResources: make(map[string]workloadinterface.IMetadata, clusterSize),
|
||
ResourcesResult: make(map[string]resourcesresults.Result, clusterSize),
|
||
// ... other pre-sized collections
|
||
}
|
||
}
|
||
```
|
||
|
||
2. Update resource collection to return count:
|
||
```go
|
||
func (k8sHandler *K8sResourceHandler) pullResources(queryableResources QueryableResources, ...) (K8SResources, map[string]workloadinterface.IMetadata, map[string]workloadinterface.IMetadata, map[string]map[string]bool, int, error) {
|
||
// ... existing code ...
|
||
return k8sResources, allResources, externalResources, excludedRulesMap, estimatedCount, nil
|
||
}
|
||
```
|
||
|
||
3. Pass size during initialization:
|
||
```go
|
||
func CollectResources(ctx context.Context, rsrcHandler IResourceHandler, opaSessionObj *cautils.OPASessionObj, ...) error {
|
||
resourcesMap, allResources, externalResources, excludedRulesMap, estimatedCount, err := rsrcHandler.GetResources(ctx, opaSessionObj, scanInfo)
|
||
|
||
// Re-initialize with proper size
|
||
if opaSessionObj.AllResources == nil {
|
||
opaSessionObj = cautils.NewOPASessionObj(estimatedCount)
|
||
}
|
||
|
||
opaSessionObj.K8SResources = resourcesMap
|
||
opaSessionObj.AllResources = allResources
|
||
// ...
|
||
}
|
||
```
|
||
|
||
**Testing:**
|
||
- Unit test: Verify pre-sized maps with expected content
|
||
- Performance test: Compare memory usage before/after
|
||
- Integration test: Scan with varying cluster sizes
|
||
|
||
**Expected Savings:** 10-20% memory reduction, reduced GC pressure
|
||
|
||
**Risk:** Low - Go's make() with capacity hint is well-tested
|
||
|
||
**Dependencies:** None
|
||
|
||
---
|
||
|
||
### Phase 3: Set-based Deduplication
|
||
|
||
**Objective:** Replace O(n) slice operations with O(1) set operations
|
||
|
||
**Files Modified:**
|
||
- `core/pkg/utils/dedup.go` (new file)
|
||
- `core/core/scan.go`
|
||
- `core/pkg/opaprocessor/processorhandler.go`
|
||
|
||
**Changes:**
|
||
|
||
1. Create new utility:
|
||
```go
|
||
// core/pkg/utils/dedup.go
|
||
package utils
|
||
|
||
import "sync"
|
||
|
||
type StringSet struct {
|
||
items map[string]struct{}
|
||
mu sync.RWMutex
|
||
}
|
||
|
||
func NewStringSet() *StringSet {
|
||
return &StringSet{
|
||
items: make(map[string]struct{}),
|
||
}
|
||
}
|
||
|
||
func (s *StringSet) Add(item string) {
|
||
s.mu.Lock()
|
||
defer s.mu.Unlock()
|
||
s.items[item] = struct{}{}
|
||
}
|
||
|
||
func (s *StringSet) AddAll(items []string) {
|
||
s.mu.Lock()
|
||
defer s.mu.Unlock()
|
||
for _, item := range items {
|
||
s.items[item] = struct{}{}
|
||
}
|
||
}
|
||
|
||
func (s *StringSet) Contains(item string) bool {
|
||
s.mu.RLock()
|
||
defer s.mu.RUnlock()
|
||
_, ok := s.items[item]
|
||
return ok
|
||
}
|
||
|
||
func (s *StringSet) ToSlice() []string {
|
||
s.mu.RLock()
|
||
defer s.mu.RUnlock()
|
||
result := make([]string, 0, len(s.items))
|
||
for item := range s.items {
|
||
result = append(result, item)
|
||
}
|
||
return result
|
||
}
|
||
```
|
||
|
||
2. Update image scanning (`core/core/scan.go:249`):
|
||
```go
|
||
func scanImages(scanType cautils.ScanTypes, scanData *cautils.OPASessionObj, ...) {
|
||
var imagesToScan *utils.StringSet
|
||
imagesToScan = utils.NewStringSet()
|
||
|
||
for _, workload := range scanData.AllResources {
|
||
containers, err := workloadinterface.NewWorkloadObj(workload.GetObject()).GetContainers()
|
||
if err != nil {
|
||
logger.L().Error(...)
|
||
continue
|
||
}
|
||
for _, container := range containers {
|
||
if !imagesToScan.Contains(container.Image) {
|
||
imagesToScan.Add(container.Image)
|
||
}
|
||
}
|
||
}
|
||
|
||
// Use imagesToScan.ToSlice() for iteration
|
||
}
|
||
```
|
||
|
||
3. Update related resources (`core/pkg/opaprocessor/processorhandler.go:261`):
|
||
```go
|
||
var relatedResourcesIDs *utils.StringSet
|
||
relatedResourcesIDs = utils.NewStringSet()
|
||
|
||
// Inside loop
|
||
if !relatedResourcesIDs.Contains(wl.GetID()) {
|
||
relatedResourcesIDs.Add(wl.GetID())
|
||
// ... process related resource
|
||
}
|
||
```
|
||
|
||
**Testing:**
|
||
- Unit tests for StringSet operations
|
||
- Benchmark tests comparing slice.Contains vs set.Contains
|
||
- Integration tests with real scan scenarios
|
||
|
||
**Expected Savings:** 5-10% CPU reduction for large clusters
|
||
|
||
**Risk:** Low - thread-safe set implementation, minimal behavior change
|
||
|
||
**Dependencies:** None
|
||
|
||
---
|
||
|
||
### Phase 4: Cache getKubernetesObjects
|
||
|
||
**Objective:** Eliminate repeated computation of resource groupings
|
||
|
||
**Files Modified:**
|
||
- `core/pkg/opaprocessor/processorhandler.go`
|
||
- `core/pkg/opaprocessor/processorhandlerutils.go`
|
||
- `core/pkg/opaprocessor/processorhandler_test.go`
|
||
|
||
**Changes:**
|
||
|
||
1. Add cache to processor:
|
||
```go
|
||
type OPAProcessor struct {
|
||
// existing fields...
|
||
k8sObjectsCache map[string]map[string][]workloadinterface.IMetadata
|
||
k8sObjectsMu sync.RWMutex
|
||
}
|
||
```
|
||
|
||
2. Add cache key generation:
|
||
```go
|
||
func (opap *OPAProcessor) getCacheKey(match []reporthandling.RuleMatchObjects) string {
|
||
var strings []string
|
||
for _, m := range match {
|
||
for _, group := range m.APIGroups {
|
||
for _, version := range m.APIVersions {
|
||
for _, resource := range m.Resources {
|
||
strings = append(strings, fmt.Sprintf("%s/%s/%s", group, version, resource))
|
||
}
|
||
}
|
||
}
|
||
}
|
||
sort.Strings(strings)
|
||
return strings.Join(strings, "|")
|
||
}
|
||
```
|
||
|
||
3. Wrap getKubernetesObjects with caching:
|
||
```go
|
||
func (opap *OPAProcessor) getKubernetesObjectsCached(k8sResources cautils.K8SResources, match []reporthandling.RuleMatchObjects) map[string][]workloadinterface.IMetadata {
|
||
cacheKey := opap.getCacheKey(match)
|
||
|
||
// Try cache
|
||
opap.k8sObjectsMu.RLock()
|
||
if cached, ok := opap.k8sObjectsCache[cacheKey]; ok {
|
||
opap.k8sObjectsMu.RUnlock()
|
||
return cached
|
||
}
|
||
opap.k8sObjectsMu.RUnlock()
|
||
|
||
// Compute new value
|
||
result := getKubernetesObjects(k8sResources, opap.AllResources, match)
|
||
|
||
// Store in cache
|
||
opap.k8sObjectsMu.Lock()
|
||
opap.k8sObjectsCache[cacheKey] = result
|
||
opap.k8sObjectsMu.Unlock()
|
||
|
||
return result
|
||
}
|
||
```
|
||
|
||
**Testing:**
|
||
- Unit test: Verify cache correctness
|
||
- Benchmark: Compare execution time with/without cache
|
||
- Integration test: Measure scan time on large cluster
|
||
|
||
**Expected Savings:** 10-15% CPU reduction
|
||
|
||
**Risk:** Low-Medium - needs proper cache invalidation logic (not needed as resources are static during scan)
|
||
|
||
**Dependencies:** None
|
||
|
||
---
|
||
|
||
### Phase 5: Resource Streaming
|
||
|
||
**Objective:** Process resources in batches instead of loading all at once
|
||
|
||
**Files Modified:**
|
||
- `core/pkg/resourcehandler/k8sresources.go`
|
||
- `core/pkg/resourcehandler/interface.go`
|
||
- `core/pkg/resourcehandler/filesloader.go`
|
||
- `core/pkg/opaprocessor/processorhandler.go`
|
||
- `cmd/scan/scan.go`
|
||
|
||
**Changes:**
|
||
|
||
1. Add streaming interface:
|
||
```go
|
||
// core/pkg/resourcehandler/interface.go
|
||
type IResourceHandler interface {
|
||
GetResources(...) (...)
|
||
StreamResources(ctx context.Context, batchSize int) (<-chan workloadinterface.IMetadata, error)
|
||
}
|
||
```
|
||
|
||
2. Implement streaming for Kubernetes resources:
|
||
```go
|
||
func (k8sHandler *K8sResourceHandler) StreamResources(ctx context.Context, batchSize int) (<-chan workloadinterface.IMetadata, error) {
|
||
ch := make(chan workloadinterface.IMetadata, batchSize)
|
||
|
||
go func() {
|
||
defer close(ch)
|
||
|
||
queryableResources := k8sHandler.getQueryableResources()
|
||
|
||
for i := range queryableResources {
|
||
select {
|
||
case <-ctx.Done():
|
||
return
|
||
default:
|
||
apiGroup, apiVersion, resource := k8sinterface.StringToResourceGroup(queryableResources[i].GroupVersionResourceTriplet)
|
||
gvr := schema.GroupVersionResource{Group: apiGroup, Version: apiVersion, Resource: resource}
|
||
|
||
result, err := k8sHandler.pullSingleResource(&gvr, nil, queryableResources[i].FieldSelectors, nil)
|
||
if err != nil {
|
||
continue
|
||
}
|
||
|
||
metaObjs := ConvertMapListToMeta(k8sinterface.ConvertUnstructuredSliceToMap(result))
|
||
|
||
for _, metaObj := range metaObjs {
|
||
select {
|
||
case ch <- metaObj:
|
||
case <-ctx.Done():
|
||
return
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}()
|
||
|
||
return ch, nil
|
||
}
|
||
```
|
||
|
||
3. Update OPA processor to handle streaming:
|
||
```go
|
||
func (opap *OPAProcessor) ProcessWithStreaming(ctx context.Context, policies *cautils.Policies, resourceStream <-chan workloadinterface.IMetadata, batchSize int) error {
|
||
batch := make([]workloadinterface.IMetadata, 0, batchSize)
|
||
opaSessionObj := cautils.NewOPASessionObj(batchSize)
|
||
|
||
// Collect batch
|
||
done := false
|
||
for !done {
|
||
select {
|
||
case resource, ok := <-resourceStream:
|
||
if !ok {
|
||
done = true
|
||
break
|
||
}
|
||
batch = append(batch, resource)
|
||
|
||
if len(batch) >= batchSize {
|
||
opaSessionObj.AllResources = batchToMap(batch)
|
||
if err := opap.ProcessBatch(ctx, policies); err != nil {
|
||
return err
|
||
}
|
||
batch = batch[:0] // Clear batch
|
||
}
|
||
case <-ctx.Done():
|
||
return ctx.Err()
|
||
}
|
||
}
|
||
|
||
// Process remaining batch
|
||
if len(batch) > 0 {
|
||
opaSessionObj.AllResources = batchToMap(batch)
|
||
if err := opap.ProcessBatch(ctx, policies); err != nil {
|
||
return err
|
||
}
|
||
}
|
||
|
||
return nil
|
||
}
|
||
```
|
||
|
||
4. Add CLI flags:
|
||
```go
|
||
// cmd/scan/scan.go
|
||
scanCmd.PersistentFlags().BoolVar(&scanInfo.StreamMode, "stream-resources", false, "Process resources in batches (lower memory, slightly slower)")
|
||
scanCmd.PersistentFlags().IntVar(&scanInfo.StreamBatchSize, "stream-batch-size", 100, "Batch size for resource streaming (lower = less memory)")
|
||
```
|
||
|
||
5. Auto-enable for large clusters:
|
||
```go
|
||
func shouldEnableStreaming(scanInfo *cautils.ScanInfo, estimatedClusterSize int) bool {
|
||
if scanInfo.StreamMode {
|
||
return true
|
||
}
|
||
|
||
largeClusterSize, _ := cautils.ParseIntEnvVar("LARGE_CLUSTER_SIZE", 2500)
|
||
if estimatedClusterSize > largeClusterSize {
|
||
logger.L().Info("Large cluster detected, enabling streaming mode")
|
||
return true
|
||
}
|
||
|
||
return false
|
||
}
|
||
```
|
||
|
||
**Testing:**
|
||
- Unit test: Verify streaming produces same results as batch mode
|
||
- Performance test: Compare memory usage on large cluster
|
||
- Integration test: Test with various batch sizes
|
||
- End-to-end test: Verify scan results match existing behavior
|
||
|
||
**Expected Savings:** 30-50% memory reduction for large clusters
|
||
|
||
**Risk:** Medium - significant behavior change, needs thorough testing
|
||
|
||
**Dependencies:** Phase 2 (map pre-sizing)
|
||
|
||
---
|
||
|
||
### Phase 6: Early Cleanup
|
||
|
||
**Objective:** Free memory promptly after resources are processed
|
||
|
||
**Files Modified:**
|
||
- `core/pkg/opaprocessor/processorhandler.go`
|
||
- `core/pkg/opaprocessor/processorhandlerutils.go`
|
||
|
||
**Changes:**
|
||
|
||
```go
|
||
func (opap *OPAProcessor) Process(ctx context.Context, policies *cautils.Policies, progressListener IJobProgressNotificationClient) error {
|
||
resourcesRemaining := make(map[string]bool)
|
||
for id := range opap.AllResources {
|
||
resourcesRemaining[id] = true
|
||
}
|
||
|
||
for _, toPin := range policies.Controls {
|
||
control := toPin
|
||
|
||
resourcesAssociatedControl, err := opap.processControl(ctx, &control)
|
||
if err != nil {
|
||
logger.L().Ctx(ctx).Warning(err.Error())
|
||
}
|
||
|
||
// Clean up processed resources if not needed for future controls
|
||
if len(policies.Controls) > 10 && !isLargeCluster(len(opap.AllResources)) {
|
||
for id := range resourcesAssociatedControl {
|
||
if resourcesRemaining[id] {
|
||
delete(resourcesRemaining, id)
|
||
|
||
// Remove from AllResources
|
||
if resource, ok := opap.AllResources[id]; ok {
|
||
removeData(resource)
|
||
delete(opap.AllResources, id)
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
return nil
|
||
}
|
||
```
|
||
|
||
**Testing:**
|
||
- Unit test: Verify cleanup doesn't affect scan results
|
||
- Memory test: Verify memory decreases during scan
|
||
- Integration test: Test with policies that reference same resources
|
||
|
||
**Expected Savings:** 10-20% memory reduction, reduced peak memory usage
|
||
|
||
**Risk:** Medium - needs careful tracking of which resources are still needed
|
||
|
||
**Dependencies:** Phase 5 (resource streaming)
|
||
|
||
---
|
||
|
||
## Implementation Timeline
|
||
|
||
### Iteration 1 (Quick Wins)
|
||
- **Week 1:** Phase 1 - OPA Module Caching
|
||
- **Week 1:** Phase 2 - Map Pre-sizing
|
||
- **Week 2:** Phase 3 - Set-based Deduplication
|
||
|
||
### Iteration 2 (Mid-Term)
|
||
- **Week 3:** Phase 4 - Cache getKubernetesObjects
|
||
|
||
### Iteration 3 (Long-Term)
|
||
- **Weeks 4-5:** Phase 5 - Resource Streaming
|
||
- **Week 6:** Phase 6 - Early Cleanup
|
||
|
||
### Total Duration: 6 weeks
|
||
|
||
---
|
||
|
||
## Risk Assessment
|
||
|
||
| Phase | Risk Level | Mitigation Strategy |
|
||
|-------|------------|-------------------|
|
||
| 1 - OPA Caching | Low | Comprehensive unit tests, fallback to uncached mode |
|
||
| 2 - Map Pre-sizing | Low | Backward compatible, capacity hints are safe |
|
||
| 3 - Set Dedup | Low | Thread-safe implementation, comprehensive tests |
|
||
| 4 - getK8SCache | Low-Medium | Cache key validation, cache invalidation logic |
|
||
| 5 - Streaming | Medium | Feature flag (disable by default), extensive integration tests |
|
||
| 6 - Early Cleanup | Medium | Track resource dependencies, thorough validation |
|
||
|
||
---
|
||
|
||
## Performance Targets
|
||
|
||
### Memory Usage
|
||
- **Current (Large Cluster >2500 resources):** ~2-4 GB
|
||
- **Target:** ~1-2 GB (50% reduction)
|
||
|
||
### CPU Usage
|
||
- **Current:** High peaks during OPA evaluation
|
||
- **Target:** 30-50% reduction in peak CPU
|
||
|
||
### Scan Time
|
||
- **Expected:** Neutral to slight improvement (streaming may add 5-10% overhead on small clusters, large clusters benefit from reduced GC)
|
||
|
||
---
|
||
|
||
## CLI Flags (Phase 5)
|
||
|
||
```bash
|
||
# Manual streaming mode
|
||
kubescape scan framework all --stream-resources --stream-batch-size 50
|
||
|
||
# Auto-detection (default)
|
||
kubescape scan framework all # Automatically enables streaming for large clusters
|
||
|
||
# Environment variable
|
||
export KUBESCAPE_STREAM_BATCH_SIZE=100
|
||
```
|
||
|
||
---
|
||
|
||
## Backward Compatibility
|
||
|
||
All changes are backward compatible:
|
||
|
||
1. Default behavior unchanged for small clusters (<2500 resources)
|
||
2. Streaming mode requires explicit flag or auto-detection
|
||
3. Cache changes are transparent to users
|
||
4. No breaking API changes
|
||
|
||
---
|
||
|
||
## Dependencies on External Packages
|
||
|
||
- `github.com/open-policy-agent/opa/ast` - OPA compilation (Phase 1)
|
||
- `github.com/kubescape/opa-utils` - Existing dependencies maintained
|
||
|
||
No new external dependencies required.
|
||
|
||
---
|
||
|
||
## Testing Strategy
|
||
|
||
### Unit Tests
|
||
- Each phase includes comprehensive unit tests
|
||
- Mock-based testing for components without external dependencies
|
||
- Property-based testing where applicable
|
||
|
||
### Integration Tests
|
||
- End-to-end scan validation
|
||
- Test clusters of varying sizes (100, 1000, 5000 resources)
|
||
- Validate identical results with and without optimizations
|
||
|
||
### Performance Tests
|
||
- Benchmark suite before/after each phase
|
||
- Memory profiling (pprof) for memory validation
|
||
- CPU profiling for CPU validation
|
||
|
||
### Regression Tests
|
||
- Compare scan results before/after all phases
|
||
- Validate all controls produce identical findings
|
||
- Test across different Kubernetes versions
|
||
|
||
---
|
||
|
||
## Success Criteria
|
||
|
||
1. **CPU Usage:** ≥30% reduction in peak CPU during scanning (measured with profiling)
|
||
2. **Memory Usage:** ≥40% reduction in peak memory for clusters >2500 resources
|
||
3. **Functional Correctness:** 100% of control findings identical to current implementation
|
||
4. **Scan Time:** No degradation >15% on small clusters; improvement on large clusters
|
||
5. **Stability:** Zero new race conditions or panics in production-style testing
|
||
|
||
---
|
||
|
||
## Alternative Approaches Considered
|
||
|
||
### Alternative 1: Worker Pool (Original #1793 Proposal)
|
||
- **Problem:** Addresses symptoms (concurrency) not root causes (data structures)
|
||
- **Conclusion:** Rejected - would not solve memory accumulation
|
||
|
||
### Alternative 2: Offload to Managed Service
|
||
- **Problem:** Shifts problem to infrastructure, doesn't solve core architecture
|
||
- **Conclusion:** Not appropriate for CLI tool use case
|
||
|
||
### Alternative 3: External Database for State
|
||
- **Problem:** Adds complexity, requires additional dependencies
|
||
- **Conclusion:** Overkill for single-scan operations
|
||
|
||
---
|
||
|
||
## Open Questions
|
||
|
||
1. **Cache Eviction Policy:** Should OPA module cache expire after N scans? (Current: process-scoped)
|
||
2. **Batch Size Tuning:** What default batch size balances memory vs. performance? (Proposed: 100)
|
||
3. **Early Cleanup Threshold:** What minimum control count enables early cleanup? (Proposed: 10)
|
||
4. **Large Cluster Threshold:** Keep existing 2500 or adjust based on optimization results?
|
||
|
||
---
|
||
|
||
## Recommendations
|
||
|
||
1. **Start with Phases 1-4** (low risk, good ROI) for immediate improvement
|
||
2. **Evaluate Phase 5-6** based on actual memory gains from earlier phases
|
||
3. **Add monitoring** to track real-world resource usage after deployment
|
||
4. **Consider making streaming opt-in** initially, then opt-out after validation
|
||
|
||
---
|
||
|
||
## Appendix: Key Code Locations
|
||
|
||
| Component | File | Line | Notes |
|
||
|-----------|------|------|-------|
|
||
| AllResources initialization | `core/cautils/datastructures.go` | 80-81 | Map pre-sizing target |
|
||
| OPA compilation | `core/pkg/opaprocessor/processorhandler.go` | 324-330 | Most CPU-intensive operation |
|
||
| getKubernetesObjects | `core/pkg/opaprocessor/processorhandlerutils.go` | 136-167 | 6-level nested loops |
|
||
| Resource collection | `core/pkg/resourcehandler/k8sresources.go` | 313-355 | Loads all resources |
|
||
| Image deduplication | `core/core/scan.go` | 249 | O(n) slice.Contains |
|
||
| Throttle package (unused) | `core/pkg/throttle/throttle.go` | - | Could be repurposed |
|
||
|
||
---
|
||
|
||
**Document Version:** 1.0
|
||
**Prepared by:** Code Investigation Team
|
||
**Review Status:** Awaiting stakeholder approval |