Implement Phases 1-3 of the performance optimization plan to address issue #1793 - reduce CPU and memory consumption for system-constrained environments. Phase 1 - OPA Module Caching: - Add compiledModules cache to OPAProcessor with thread-safe access - Cache compiled OPA rules to eliminate redundant compilation - Reuse compiled modules with double-checked locking pattern - Expected CPU savings: 30-40% Phase 2 - Map Pre-sizing: - Add estimateClusterSize() to calculate resource count - Pre-size AllResources, ResourcesResult, and related maps - Reduce memory reallocations and GC pressure - Expected memory savings: 10-20% Phase 3 - Set-based Deduplication: - Add thread-safe StringSet utility in core/pkg/utils - Replace O(n) slices.Contains() with O(1) map operations - Use StringSet for image scanning and related resources deduplication - 100% test coverage for new utility - Expected CPU savings: 5-10% for large clusters Full optimization plan documented in optimization-plan.md Related: #1793 Signed-off-by: Matthias Bertschy <matthias.bertschy@gmail.com>
23 KiB
Kubescape CPU/Memory Optimization Plan
Issue: #1793 - High CPU and Memory Usage on System-Constrained Environments
Date: February 3, 2026
Root Cause Analysis: Completed
Proposed Solution: Combined optimization approach across multiple components
Executive Summary
Investigation into issue #1793 revealed that the original worker pool proposal addressed the symptoms but not the root causes. The actual sources of resource exhaustion are:
- Memory: Unbounded data structures loading entire cluster state into memory
- CPU: Repeated expensive operations (OPA compilation) and nested loop complexity
This document outlines a phased approach to reduce memory usage by 40-60% and CPU usage by 30-50%.
Root Cause Analysis
Memory Hotspots
-
AllResources Map (
core/cautils/datastructures.go:53)- Loads ALL Kubernetes resources into memory at once
- No pre-sizing causes reallocations
- Contains every pod, deployment, service, etc. in cluster
- Impact: Hundreds of MBs to several GBs for large clusters
-
ResourcesResult Map (
core/cautils/datastructures.go:54)- Stores scan results for every resource
- Grows dynamically without capacity hints
- Impact: Proportional to resources scanned
-
Temporary Data Structures
- Nested loops create temporary slices in
getKubernetesObjects - Repeated allocation per rule evaluation
- Impact: Memory churn and GC pressure
- Nested loops create temporary slices in
CPU Hotspots
-
OPA Module Compilation (
core/pkg/opaprocessor/processorhandler.go:324-330)- Comment explicitly states: "OPA module compilation is the most resource-intensive operation"
- Compiles EVERY rule from scratch (no caching)
- Typical scan: ~100 controls × 5 rules = 500+ compilations
- Impact: High CPU, repeated compilation overhead
-
6-Level Nested Loops (
core/pkg/opaprocessor/processorhandlerutils.go:136-167)- Creates temporary data structures for each rule
- Iterates all matched resources multiple times
- Impact: O(n×m×...) complexity
-
O(n) Slice Operations
slices.Contains()for deduplication in image scanningRelatedResourcesIDsslice growth with O(n) membership checks- Impact: Degraded performance with larger datasets
Codebase Evidence
The team is already aware of this issue, with internal documentation acknowledging the problem:
// isLargeCluster returns true if the cluster size is larger than the largeClusterSize
// This code is a workaround for large clusters. The final solution will be to scan resources individually
// Source: core/pkg/opaprocessor/processorhandlerutils.go:279
Proposed Solutions: Six-Phase Implementation
Phase 1: OPA Module Caching
Objective: Eliminate redundant rule compilations
Files Modified:
core/pkg/opaprocessor/processorhandler.gocore/pkg/opaprocessor/processorhandler_test.go
Changes:
type OPAProcessor struct {
// existing fields...
compiledModules map[string]*ast.Compiler
compiledMu sync.RWMutex
}
func (opap *OPAProcessor) getCompiledRule(ctx context.Context, rule reporthandling.Rule, modules map[string]string) (*ast.Compiler, error) {
// Check cache with read lock
cacheKey := rule.Name + "|" + rule.Rule
opap.compiledMu.RLock()
if compiled, ok := opap.compiledModules[cacheKey]; ok {
opap.compiledMu.RUnlock()
return compiled, nil
}
opap.compiledMu.RUnlock()
// Compile new module with write lock
opap.compiledMu.Lock()
defer opap.compiledMu.Unlock()
// Double-check pattern (cache might have been filled)
if compiled, ok := opap.compiledModules[cacheKey]; ok {
return compiled, nil
}
compiled, err := ast.CompileModulesWithOpt(modules, ast.CompileOpts{
EnablePrintStatements: opap.printEnabled,
ParserOptions: ast.ParserOptions{RegoVersion: ast.RegoV0},
})
if err != nil {
return nil, fmt.Errorf("failed to compile rule '%s': %w", rule.Name, err)
}
opap.compiledModules[cacheKey] = compiled
return compiled, nil
}
Integration Point: Replace direct compilation call in runRegoOnK8s(:338 with cached retrieval
Testing:
- Unit test: Verify cache hit for identical rules
- Unit test: Verify cache miss for different rules
- Integration test: Measure scan time before/after
Expected Savings: 30-40% CPU reduction
Risk: Low - caching is a well-known pattern, minimal behavior change
Dependencies: None
Phase 2: Map Pre-sizing
Objective: Reduce memory allocations and fragmentation
Files Modified:
core/cautils/datastructures.gocore/cautils/datastructures_test.gocore/pkg/resourcehandler/handlerpullresources.gocore/pkg/resourcehandler/k8sresources.go
Changes:
- Update constructor to pre-size maps (cluster size estimated internally):
func NewOPASessionObj(ctx context.Context, frameworks []reporthandling.Framework, k8sResources K8SResources, scanInfo *ScanInfo) *OPASessionObj {
clusterSize := estimateClusterSize(k8sResources)
if clusterSize < 100 {
clusterSize = 100
}
return &OPASessionObj{
AllResources: make(map[string]workloadinterface.IMetadata, clusterSize),
ResourcesResult: make(map[string]resourcesresults.Result, clusterSize),
// ... other pre-sized collections
}
}
- Update resource collection to return count:
func (k8sHandler *K8sResourceHandler) pullResources(queryableResources QueryableResources, ...) (K8SResources, map[string]workloadinterface.IMetadata, map[string]workloadinterface.IMetadata, map[string]map[string]bool, int, error) {
// ... existing code ...
return k8sResources, allResources, externalResources, excludedRulesMap, estimatedCount, nil
}
- Pass size during initialization:
func CollectResources(ctx context.Context, rsrcHandler IResourceHandler, opaSessionObj *cautils.OPASessionObj, ...) error {
resourcesMap, allResources, externalResources, excludedRulesMap, estimatedCount, err := rsrcHandler.GetResources(ctx, opaSessionObj, scanInfo)
// Re-initialize with proper size
if opaSessionObj.AllResources == nil {
opaSessionObj = cautils.NewOPASessionObj(estimatedCount)
}
opaSessionObj.K8SResources = resourcesMap
opaSessionObj.AllResources = allResources
// ...
}
Testing:
- Unit test: Verify pre-sized maps with expected content
- Performance test: Compare memory usage before/after
- Integration test: Scan with varying cluster sizes
Expected Savings: 10-20% memory reduction, reduced GC pressure
Risk: Low - Go's make() with capacity hint is well-tested
Dependencies: None
Phase 3: Set-based Deduplication
Objective: Replace O(n) slice operations with O(1) set operations
Files Modified:
core/pkg/utils/dedup.go(new file)core/core/scan.gocore/pkg/opaprocessor/processorhandler.go
Changes:
- Create new utility:
// core/pkg/utils/dedup.go
package utils
import "sync"
type StringSet struct {
items map[string]struct{}
mu sync.RWMutex
}
func NewStringSet() *StringSet {
return &StringSet{
items: make(map[string]struct{}),
}
}
func (s *StringSet) Add(item string) {
s.mu.Lock()
defer s.mu.Unlock()
s.items[item] = struct{}{}
}
func (s *StringSet) AddAll(items []string) {
s.mu.Lock()
defer s.mu.Unlock()
for _, item := range items {
s.items[item] = struct{}{}
}
}
func (s *StringSet) Contains(item string) bool {
s.mu.RLock()
defer s.mu.RUnlock()
_, ok := s.items[item]
return ok
}
func (s *StringSet) ToSlice() []string {
s.mu.RLock()
defer s.mu.RUnlock()
result := make([]string, 0, len(s.items))
for item := range s.items {
result = append(result, item)
}
return result
}
- Update image scanning (
core/core/scan.go:249):
func scanImages(scanType cautils.ScanTypes, scanData *cautils.OPASessionObj, ...) {
var imagesToScan *utils.StringSet
imagesToScan = utils.NewStringSet()
for _, workload := range scanData.AllResources {
containers, err := workloadinterface.NewWorkloadObj(workload.GetObject()).GetContainers()
if err != nil {
logger.L().Error(...)
continue
}
for _, container := range containers {
if !imagesToScan.Contains(container.Image) {
imagesToScan.Add(container.Image)
}
}
}
// Use imagesToScan.ToSlice() for iteration
}
- Update related resources (
core/pkg/opaprocessor/processorhandler.go:261):
var relatedResourcesIDs *utils.StringSet
relatedResourcesIDs = utils.NewStringSet()
// Inside loop
if !relatedResourcesIDs.Contains(wl.GetID()) {
relatedResourcesIDs.Add(wl.GetID())
// ... process related resource
}
Testing:
- Unit tests for StringSet operations
- Benchmark tests comparing slice.Contains vs set.Contains
- Integration tests with real scan scenarios
Expected Savings: 5-10% CPU reduction for large clusters
Risk: Low - thread-safe set implementation, minimal behavior change
Dependencies: None
Phase 4: Cache getKubernetesObjects
Objective: Eliminate repeated computation of resource groupings
Files Modified:
core/pkg/opaprocessor/processorhandler.gocore/pkg/opaprocessor/processorhandlerutils.gocore/pkg/opaprocessor/processorhandler_test.go
Changes:
- Add cache to processor:
type OPAProcessor struct {
// existing fields...
k8sObjectsCache map[string]map[string][]workloadinterface.IMetadata
k8sObjectsMu sync.RWMutex
}
- Add cache key generation:
func (opap *OPAProcessor) getCacheKey(match []reporthandling.RuleMatchObjects) string {
var strings []string
for _, m := range match {
for _, group := range m.APIGroups {
for _, version := range m.APIVersions {
for _, resource := range m.Resources {
strings = append(strings, fmt.Sprintf("%s/%s/%s", group, version, resource))
}
}
}
}
sort.Strings(strings)
return strings.Join(strings, "|")
}
- Wrap getKubernetesObjects with caching:
func (opap *OPAProcessor) getKubernetesObjectsCached(k8sResources cautils.K8SResources, match []reporthandling.RuleMatchObjects) map[string][]workloadinterface.IMetadata {
cacheKey := opap.getCacheKey(match)
// Try cache
opap.k8sObjectsMu.RLock()
if cached, ok := opap.k8sObjectsCache[cacheKey]; ok {
opap.k8sObjectsMu.RUnlock()
return cached
}
opap.k8sObjectsMu.RUnlock()
// Compute new value
result := getKubernetesObjects(k8sResources, opap.AllResources, match)
// Store in cache
opap.k8sObjectsMu.Lock()
opap.k8sObjectsCache[cacheKey] = result
opap.k8sObjectsMu.Unlock()
return result
}
Testing:
- Unit test: Verify cache correctness
- Benchmark: Compare execution time with/without cache
- Integration test: Measure scan time on large cluster
Expected Savings: 10-15% CPU reduction
Risk: Low-Medium - needs proper cache invalidation logic (not needed as resources are static during scan)
Dependencies: None
Phase 5: Resource Streaming
Objective: Process resources in batches instead of loading all at once
Files Modified:
core/pkg/resourcehandler/k8sresources.gocore/pkg/resourcehandler/interface.gocore/pkg/resourcehandler/filesloader.gocore/pkg/opaprocessor/processorhandler.gocmd/scan/scan.go
Changes:
- Add streaming interface:
// core/pkg/resourcehandler/interface.go
type IResourceHandler interface {
GetResources(...) (...)
StreamResources(ctx context.Context, batchSize int) (<-chan workloadinterface.IMetadata, error)
}
- Implement streaming for Kubernetes resources:
func (k8sHandler *K8sResourceHandler) StreamResources(ctx context.Context, batchSize int) (<-chan workloadinterface.IMetadata, error) {
ch := make(chan workloadinterface.IMetadata, batchSize)
go func() {
defer close(ch)
queryableResources := k8sHandler.getQueryableResources()
for i := range queryableResources {
select {
case <-ctx.Done():
return
default:
apiGroup, apiVersion, resource := k8sinterface.StringToResourceGroup(queryableResources[i].GroupVersionResourceTriplet)
gvr := schema.GroupVersionResource{Group: apiGroup, Version: apiVersion, Resource: resource}
result, err := k8sHandler.pullSingleResource(&gvr, nil, queryableResources[i].FieldSelectors, nil)
if err != nil {
continue
}
metaObjs := ConvertMapListToMeta(k8sinterface.ConvertUnstructuredSliceToMap(result))
for _, metaObj := range metaObjs {
select {
case ch <- metaObj:
case <-ctx.Done():
return
}
}
}
}
}()
return ch, nil
}
- Update OPA processor to handle streaming:
func (opap *OPAProcessor) ProcessWithStreaming(ctx context.Context, policies *cautils.Policies, resourceStream <-chan workloadinterface.IMetadata, batchSize int) error {
batch := make([]workloadinterface.IMetadata, 0, batchSize)
opaSessionObj := cautils.NewOPASessionObj(batchSize)
// Collect batch
done := false
for !done {
select {
case resource, ok := <-resourceStream:
if !ok {
done = true
break
}
batch = append(batch, resource)
if len(batch) >= batchSize {
opaSessionObj.AllResources = batchToMap(batch)
if err := opap.ProcessBatch(ctx, policies); err != nil {
return err
}
batch = batch[:0] // Clear batch
}
case <-ctx.Done():
return ctx.Err()
}
}
// Process remaining batch
if len(batch) > 0 {
opaSessionObj.AllResources = batchToMap(batch)
if err := opap.ProcessBatch(ctx, policies); err != nil {
return err
}
}
return nil
}
- Add CLI flags:
// cmd/scan/scan.go
scanCmd.PersistentFlags().BoolVar(&scanInfo.StreamMode, "stream-resources", false, "Process resources in batches (lower memory, slightly slower)")
scanCmd.PersistentFlags().IntVar(&scanInfo.StreamBatchSize, "stream-batch-size", 100, "Batch size for resource streaming (lower = less memory)")
- Auto-enable for large clusters:
func shouldEnableStreaming(scanInfo *cautils.ScanInfo, estimatedClusterSize int) bool {
if scanInfo.StreamMode {
return true
}
largeClusterSize, _ := cautils.ParseIntEnvVar("LARGE_CLUSTER_SIZE", 2500)
if estimatedClusterSize > largeClusterSize {
logger.L().Info("Large cluster detected, enabling streaming mode")
return true
}
return false
}
Testing:
- Unit test: Verify streaming produces same results as batch mode
- Performance test: Compare memory usage on large cluster
- Integration test: Test with various batch sizes
- End-to-end test: Verify scan results match existing behavior
Expected Savings: 30-50% memory reduction for large clusters
Risk: Medium - significant behavior change, needs thorough testing
Dependencies: Phase 2 (map pre-sizing)
Phase 6: Early Cleanup
Objective: Free memory promptly after resources are processed
Files Modified:
core/pkg/opaprocessor/processorhandler.gocore/pkg/opaprocessor/processorhandlerutils.go
Changes:
func (opap *OPAProcessor) Process(ctx context.Context, policies *cautils.Policies, progressListener IJobProgressNotificationClient) error {
resourcesRemaining := make(map[string]bool)
for id := range opap.AllResources {
resourcesRemaining[id] = true
}
for _, toPin := range policies.Controls {
control := toPin
resourcesAssociatedControl, err := opap.processControl(ctx, &control)
if err != nil {
logger.L().Ctx(ctx).Warning(err.Error())
}
// Clean up processed resources if not needed for future controls
if len(policies.Controls) > 10 && !isLargeCluster(len(opap.AllResources)) {
for id := range resourcesAssociatedControl {
if resourcesRemaining[id] {
delete(resourcesRemaining, id)
// Remove from AllResources
if resource, ok := opap.AllResources[id]; ok {
removeData(resource)
delete(opap.AllResources, id)
}
}
}
}
}
return nil
}
Testing:
- Unit test: Verify cleanup doesn't affect scan results
- Memory test: Verify memory decreases during scan
- Integration test: Test with policies that reference same resources
Expected Savings: 10-20% memory reduction, reduced peak memory usage
Risk: Medium - needs careful tracking of which resources are still needed
Dependencies: Phase 5 (resource streaming)
Implementation Timeline
Iteration 1 (Quick Wins)
- Week 1: Phase 1 - OPA Module Caching
- Week 1: Phase 2 - Map Pre-sizing
- Week 2: Phase 3 - Set-based Deduplication
Iteration 2 (Mid-Term)
- Week 3: Phase 4 - Cache getKubernetesObjects
Iteration 3 (Long-Term)
- Weeks 4-5: Phase 5 - Resource Streaming
- Week 6: Phase 6 - Early Cleanup
Total Duration: 6 weeks
Risk Assessment
| Phase | Risk Level | Mitigation Strategy |
|---|---|---|
| 1 - OPA Caching | Low | Comprehensive unit tests, fallback to uncached mode |
| 2 - Map Pre-sizing | Low | Backward compatible, capacity hints are safe |
| 3 - Set Dedup | Low | Thread-safe implementation, comprehensive tests |
| 4 - getK8SCache | Low-Medium | Cache key validation, cache invalidation logic |
| 5 - Streaming | Medium | Feature flag (disable by default), extensive integration tests |
| 6 - Early Cleanup | Medium | Track resource dependencies, thorough validation |
Performance Targets
Memory Usage
- Current (Large Cluster >2500 resources): ~2-4 GB
- Target: ~1-2 GB (50% reduction)
CPU Usage
- Current: High peaks during OPA evaluation
- Target: 30-50% reduction in peak CPU
Scan Time
- Expected: Neutral to slight improvement (streaming may add 5-10% overhead on small clusters, large clusters benefit from reduced GC)
CLI Flags (Phase 5)
# Manual streaming mode
kubescape scan framework all --stream-resources --stream-batch-size 50
# Auto-detection (default)
kubescape scan framework all # Automatically enables streaming for large clusters
# Environment variable
export KUBESCAPE_STREAM_BATCH_SIZE=100
Backward Compatibility
All changes are backward compatible:
- Default behavior unchanged for small clusters (<2500 resources)
- Streaming mode requires explicit flag or auto-detection
- Cache changes are transparent to users
- No breaking API changes
Dependencies on External Packages
github.com/open-policy-agent/opa/ast- OPA compilation (Phase 1)github.com/kubescape/opa-utils- Existing dependencies maintained
No new external dependencies required.
Testing Strategy
Unit Tests
- Each phase includes comprehensive unit tests
- Mock-based testing for components without external dependencies
- Property-based testing where applicable
Integration Tests
- End-to-end scan validation
- Test clusters of varying sizes (100, 1000, 5000 resources)
- Validate identical results with and without optimizations
Performance Tests
- Benchmark suite before/after each phase
- Memory profiling (pprof) for memory validation
- CPU profiling for CPU validation
Regression Tests
- Compare scan results before/after all phases
- Validate all controls produce identical findings
- Test across different Kubernetes versions
Success Criteria
- CPU Usage: ≥30% reduction in peak CPU during scanning (measured with profiling)
- Memory Usage: ≥40% reduction in peak memory for clusters >2500 resources
- Functional Correctness: 100% of control findings identical to current implementation
- Scan Time: No degradation >15% on small clusters; improvement on large clusters
- Stability: Zero new race conditions or panics in production-style testing
Alternative Approaches Considered
Alternative 1: Worker Pool (Original #1793 Proposal)
- Problem: Addresses symptoms (concurrency) not root causes (data structures)
- Conclusion: Rejected - would not solve memory accumulation
Alternative 2: Offload to Managed Service
- Problem: Shifts problem to infrastructure, doesn't solve core architecture
- Conclusion: Not appropriate for CLI tool use case
Alternative 3: External Database for State
- Problem: Adds complexity, requires additional dependencies
- Conclusion: Overkill for single-scan operations
Open Questions
- Cache Eviction Policy: Should OPA module cache expire after N scans? (Current: process-scoped)
- Batch Size Tuning: What default batch size balances memory vs. performance? (Proposed: 100)
- Early Cleanup Threshold: What minimum control count enables early cleanup? (Proposed: 10)
- Large Cluster Threshold: Keep existing 2500 or adjust based on optimization results?
Recommendations
- Start with Phases 1-4 (low risk, good ROI) for immediate improvement
- Evaluate Phase 5-6 based on actual memory gains from earlier phases
- Add monitoring to track real-world resource usage after deployment
- Consider making streaming opt-in initially, then opt-out after validation
Appendix: Key Code Locations
| Component | File | Line | Notes |
|---|---|---|---|
| AllResources initialization | core/cautils/datastructures.go |
80-81 | Map pre-sizing target |
| OPA compilation | core/pkg/opaprocessor/processorhandler.go |
324-330 | Most CPU-intensive operation |
| getKubernetesObjects | core/pkg/opaprocessor/processorhandlerutils.go |
136-167 | 6-level nested loops |
| Resource collection | core/pkg/resourcehandler/k8sresources.go |
313-355 | Loads all resources |
| Image deduplication | core/core/scan.go |
249 | O(n) slice.Contains |
| Throttle package (unused) | core/pkg/throttle/throttle.go |
- | Could be repurposed |
Document Version: 1.0
Prepared by: Code Investigation Team
Review Status: Awaiting stakeholder approval