Compare commits

..

65 Commits

Author SHA1 Message Date
Tullio Sebastiani
7a966a71d0 krkn integration of telemetry events collection (#523)
* function package refactoring in krkn-lib

* cluster events collection flag

* krkn-lib version bump

requirements

* dockerfile bump
2023-10-31 14:31:33 -04:00
Naga Ravi Chaitanya Elluri
43d891afd3 Bump telemetry archive default size to 500MB
This commit also removes litmus configs as they are not maintained.
2023-10-30 12:50:04 -04:00
Tullio Sebastiani
27fabfd4af OCP/K8S functionalities and packages splitting in krkn-lib (#507)
* krkn-lib ocp/k8s split adaptation

* library reference updated

* requirements update

* rebase with main + fix
2023-10-30 17:31:48 +01:00
Tullio Sebastiani
724068a978 Chaos recommender refactoring (#516)
* basic structure working

* config and options refactoring

nits and changes

* removed unused function with typo + fixed duration

* removed unused arguments

* minor fixes
2023-10-30 15:51:09 +01:00
Tullio Sebastiani
c9778474f1 arcaflow version bump (#520)
arcaflow version bump

stressng version typo
2023-10-27 18:09:46 +02:00
dependabot[bot]
6efdb2eb84 Bump werkzeug from 2.2.3 to 3.0.1
Bumps [werkzeug](https://github.com/pallets/werkzeug) from 2.2.3 to 3.0.1.
- [Release notes](https://github.com/pallets/werkzeug/releases)
- [Changelog](https://github.com/pallets/werkzeug/blob/main/CHANGES.rst)
- [Commits](https://github.com/pallets/werkzeug/compare/2.2.3...3.0.1)

---
updated-dependencies:
- dependency-name: werkzeug
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-10-26 11:09:29 -04:00
Naga Ravi Chaitanya Elluri
0e852da7d4 Deprecate kubernetes method of deploying Krkn
This will ensure users will use the recommended methods ( standlone or containerized )
of installing and running Krkn.
2023-10-25 12:32:46 -04:00
jtydlack
86d1fda325 Fix container scenario to accept only signal number (#350) (#485) 2023-10-24 16:51:48 -04:00
Naga Ravi Chaitanya Elluri
fc6344176b Add pointer to the CNCF sandbox discussion (#517)
Signed-off-by: Naga Ravi Chaitanya Elluri <nelluri@redhat.com>
2023-10-24 16:07:40 -04:00
jtydlack
ff469579e9 Use function get_yaml_item_value
Enables using default even though the value was loaded as None.
2023-10-24 14:55:49 -04:00
Naga Ravi Chaitanya Elluri
8cbd1c5e7f Add docs for installing chaos-recommender dependencies
This commit also updates roadmap around chaos-recommender.
2023-10-18 08:56:33 -04:00
Mudit Verma
5953e53b46 chaos recommendation entry in README (#510) 2023-10-16 11:26:32 -04:00
Mudit Verma
23f1fc044b Chaos Recommendation Utility (#508)
* application profiling based chaos recommendation

* deleted unused dir

* Update requirements.txt

Signed-off-by: Mudit Verma <mudiverm@in.ibm.com>

* Update config.ini

Signed-off-by: Mudit Verma <mudiverm@in.ibm.com>

* Update Makefile

Signed-off-by: Mudit Verma <mudiverm@in.ibm.com>

* Update Dockerfile

Signed-off-by: Mudit Verma <mudiverm@in.ibm.com>

* Update README.md

Signed-off-by: Mudit Verma <mudiverm@in.ibm.com>

---------

Signed-off-by: Mudit Verma <mudiverm@in.ibm.com>
2023-10-16 10:06:02 -04:00
Naga Ravi Chaitanya Elluri
69e386db53 Update roadmap with upcoming integrations and enhancements 2023-10-11 09:24:34 -04:00
Tullio Sebastiani
fef77cfc0e dockerfiles version update 2023-10-09 09:26:57 -04:00
Naga Ravi Chaitanya Elluri
eb2eabe029 Update community slack channel 2023-10-06 17:47:25 -04:00
Paige Rubendall
f7f1b2dfb0 Service disruption (#494)
* adding service disruption

* fixing kil services

* service log changes

* remvoing extra logging

* adding daemon set

* adding service disruption name changes

* cerberus config back

* bad string
2023-10-06 12:51:10 -04:00
Tullio Sebastiani
61356fd70b Added log telemetry piece to Krkn (#500)
* config

* log collection and upload

dictionary key fix

* escape regex in config.yaml

* bump krkn-lib version

* updated funtest github cli command

* update krkn-lib version to 1.3.2

* fixed requirements.txt
2023-10-06 10:08:46 -04:00
Tullio Sebastiani
067969a81a docker version update (#502) 2023-10-03 11:49:20 -04:00
Naga Ravi Chaitanya Elluri
972ac12921 Bump krkn-lib version (#499) 2023-10-03 17:00:07 +02:00
Tullio Sebastiani
ea813748ae added OCP/K8S functionalities split in the roadmap (#498) 2023-09-26 00:59:20 -04:00
Tullio Sebastiani
782d04c1b1 Prints the telemetry json after sending it to the webservice (#479)
* prints telemetry json after sending it to the service


deserialized base64 parameters

* json output even if telemetry collection is disabled.
2023-09-25 12:00:08 -04:00
Naga Ravi Chaitanya Elluri
2fb58f9897 Update roadmap with completed and new items 2023-09-21 15:33:44 -04:00
Tullio Sebastiani
5712721410 bumped docker version (#493)
Co-authored-by: Naga Ravi Chaitanya Elluri <nelluri@redhat.com>
2023-09-19 17:38:44 +02:00
Tullio Sebastiani
5567c06cd0 reinstated io-hog documentation (#492) 2023-09-19 17:27:59 +02:00
Sahil Shah
0ad4c11356 Fix for time scenario (#490) 2023-09-14 12:36:08 -04:00
Tullio Sebastiani
f6f686e8fe fixed io-hog scenario 2023-09-13 09:57:00 -04:00
Pratyusha Thammineni
3a66f8a5a3 Added Docker image build workflow status badge
This Allows the users to track the docker-build action in README.md
without navigationg to Actions tab on Github
2023-09-11 15:16:28 -04:00
Sahil Shah
585d519687 Adding Prometheus Disruption Scenario (#484) 2023-09-11 11:18:29 -04:00
yogananth-subramanian
e40fedcd44 Update etcd metrics 2023-09-08 11:11:42 -04:00
Paige Rubendall
1bb5b8ad04 adding comment 2023-08-29 21:54:17 -04:00
Paige Rubendall
725d58c8ce adding docs update again 2023-08-25 14:37:07 -04:00
Paige Rubendall
c6058da7a7 adding comment 2023-08-25 12:19:03 -04:00
Naga Ravi Chaitanya Elluri
06a8ed220c Bump release version to v1.4.4 2023-08-24 13:28:39 -04:00
Dustin Black
2c6b50bcdc bump arcaflow stressng plugin to 0.3.1 for bug fix 2023-08-24 12:50:28 -04:00
Naga Ravi Chaitanya Elluri
ed97c8df2b Bump release version to v1.4.3 2023-08-23 11:56:39 -04:00
Tullio Sebastiani
1baa68bcee engine bump to v0.6.1 2023-08-23 11:38:23 -04:00
Naga Ravi Chaitanya Elluri
ab84f09448 Use release tags vs latest for kubeconfig arca plugins (#473) 2023-08-23 09:59:33 -04:00
Dustin Black
6ace3c952b update to plugin release stressng:0.3.0 (#472) 2023-08-23 09:15:30 -04:00
Tullio Sebastiani
cee5259fd3 arcaflow scenarios removed from config.yaml 2023-08-23 08:50:19 -04:00
Tullio Sebastiani
f868000ebd Switched from krkn_lib_kubernetes to krkn_lib v1.0.0 (#469)
* changed all the references to krkn_lib_kubernetes to the new krkn_lib


changed all the references

* added krkn-lib pointer in documentation
2023-08-22 12:41:40 -04:00
pratyusha
d2d80be241 Updated config.yaml file with more scenarios (#468) 2023-08-21 11:26:33 -04:00
Naga Ravi Chaitanya Elluri
da464859c4 Bump release version to v1.4.2 2023-08-21 09:06:28 -04:00
Naga Ravi Chaitanya Elluri
ef88005985 Use images tagged with a release for hog scenarios
This commit switches from using latest images to a specific release
to review changes and update configs before using the latest bits.
2023-08-18 01:47:17 -04:00
Sahil Shah
102bdfdc96 Bump the release version to v1.4.1 (#465) 2023-08-17 10:18:11 -04:00
Sahil Shah
b569e6a9d5 Fixing pvc scenario 2023-08-16 16:05:18 -04:00
Tullio Sebastiani
dba38668b7 Dockerfile version bump 2023-08-11 11:12:56 -04:00
Tullio Sebastiani
39c0152b7b Krkn telemetry integration (#435)
* adapted config.yaml to the new feature

* temporarly pointing requirement.txt to the lib feature branch

* run_kraken.py + arcaflow scenarios refactoring


typo

* plugin scenario

* node scenarios


return failed scenarios

* container scenarios


fix

* time scenarios

* cluster shutdown  scenarios

* namespace scenarios

* zone outage scenarios

* app outage scenarios

* pvc scenarios

* network chaos scenarios

* run_kraken.py adaptation to telemetry

* prometheus telemetry upload + config.yaml


some fixes


typos and logs


max retries in config


telemetry id with run_uuid


safe_logger

* catch send_telemetry exception

* scenario collection bug fixes

* telemetry enabled check

* telemetry run tag

* requirements pointing to main + archive_size

* requirements.txt and config.yaml update

* added telemetry config to common config

* fixed scenario array elements for telemetry
2023-08-10 14:42:53 -04:00
jtydlack
491dc17267 Slo via http (#459)
* Fix typo

* Enable loading SLO profile via URL (#438)
2023-08-10 11:02:33 -04:00
yogananth-subramanian
b2b5002f45 Pod egress network shapping Chaos scenario
The scenario introduces network latency, packet loss, and bandwidth restriction in the Pod's network interface.
The purpose of this scenario is to observe faults caused by random variations in the network.

Below example config applies egress traffic shaping to openshift console.
````
- id: pod_egress_shaping
  config:
    namespace: openshift-console   # Required - Namespace of the pod to which filter need to be applied.
    label_selector: 'component=ui' # Applies traffic shaping to access openshift console.
    network_params:
        latency: 500ms             # Add 500ms latency to egress traffic from the pod.
````
2023-08-08 11:45:03 -04:00
Sahil Shah
fccd701dee Changed the image in volume_scenario.yml to a public one (#458) 2023-08-02 00:11:38 -04:00
José Castillo Lema
570631ebfc Widen except (#457)
Signed-off-by: José Castillo Lema <josecastillolema@gmail.com>
2023-07-26 18:53:52 +02:00
Naga Ravi Chaitanya Elluri
3ab9ca4319 Bump release version to v1.3.6 2023-07-24 14:06:37 -04:00
Naga Ravi Chaitanya Elluri
4084ffd9c6 Bake in virtualenv in krkn images
This is needed to tie the python version being used in case multiple
versions are installed.
2023-07-24 12:52:20 -04:00
Sahil Shah
19cc2c047f Fix for pvc scenario 2023-07-21 15:41:28 -04:00
Paige Rubendall
6197fc6722 separating build and test workflows (#448)
* separating build and test workflows

* only run build on pull request
2023-07-20 16:01:50 -04:00
Naga Ravi Chaitanya Elluri
2a8ac41ebf Bump release version to v1.3.5 2023-07-20 15:24:56 -04:00
Naga Ravi Chaitanya Elluri
b4d235d31c Bake in yq dependency in Kraken container images (#450)
This commit also updates ppc64le image to have the latest bits.
2023-07-20 13:17:52 -04:00
Naga Ravi Chaitanya Elluri
e4e4620d10 Bump release version to 1.3.4 (#447) 2023-06-28 16:30:28 -04:00
Naga Ravi Chaitanya Elluri
a2c24ab7ed Install latest version of krkn-lib-kubernetes (#446) 2023-06-28 15:21:19 -04:00
Naga Ravi Chaitanya Elluri
fe892fd9bf Switch from centos to redhat ubi base image
This replaces the base image for Kraken container images to use
redhat ubi image to be more secure and stable.
2023-06-22 12:10:51 -04:00
Naga Ravi Chaitanya Elluri
74613fdb4b Install oc and kubectl clients from stable releases
This makes sure latest clients are installed and used:
- This will avoid compatability issues with the server
- Fixes security vulnerabilities and CVEs
2023-06-20 15:39:53 -04:00
Naga Ravi Chaitanya Elluri
28c37c9353 Bump release version to v1.3.3 2023-06-16 09:42:46 -04:00
Naga Ravi Chaitanya Elluri
de0567b067 Tweak the etcd alert severity 2023-06-16 09:19:17 -04:00
Naga Ravi Chaitanya Elluri
83486557f1 Bump release version to v1.3.2 (#439) 2023-06-15 12:12:42 -04:00
72 changed files with 3462 additions and 1211 deletions

View File

@@ -1,8 +1,5 @@
name: Build Krkn
on:
push:
branches:
- main
pull_request:
jobs:
@@ -51,20 +48,4 @@ jobs:
if-no-files-found: error
- name: Check CI results
run: grep Fail CI/results.markdown && false || true
- name: Build the Docker images
run: docker build --no-cache -t quay.io/redhat-chaos/krkn containers/
- name: Login in quay
if: github.ref == 'refs/heads/main' && github.event_name == 'push'
run: docker login quay.io -u ${QUAY_USER} -p ${QUAY_TOKEN}
env:
QUAY_USER: ${{ secrets.QUAY_USER_1 }}
QUAY_TOKEN: ${{ secrets.QUAY_TOKEN_1 }}
- name: Push the Docker images
if: github.ref == 'refs/heads/main' && github.event_name == 'push'
run: docker push quay.io/redhat-chaos/krkn
- name: Rebuild krkn-hub
if: github.ref == 'refs/heads/main' && github.event_name == 'push'
uses: redhat-chaos/actions/krkn-hub@main
with:
QUAY_USER: ${{ secrets.QUAY_USER_1 }}
QUAY_TOKEN: ${{ secrets.QUAY_TOKEN_1 }}

30
.github/workflows/docker-image.yml vendored Normal file
View File

@@ -0,0 +1,30 @@
name: Docker Image CI
on:
push:
branches:
- main
pull_request:
jobs:
build:
runs-on: ubuntu-latest
steps:
- name: Check out code
uses: actions/checkout@v3
- name: Build the Docker images
run: docker build --no-cache -t quay.io/redhat-chaos/krkn containers/
- name: Login in quay
if: github.ref == 'refs/heads/main' && github.event_name == 'push'
run: docker login quay.io -u ${QUAY_USER} -p ${QUAY_TOKEN}
env:
QUAY_USER: ${{ secrets.QUAY_USER_1 }}
QUAY_TOKEN: ${{ secrets.QUAY_TOKEN_1 }}
- name: Push the Docker images
if: github.ref == 'refs/heads/main' && github.event_name == 'push'
run: docker push quay.io/redhat-chaos/krkn
- name: Rebuild krkn-hub
if: github.ref == 'refs/heads/main' && github.event_name == 'push'
uses: redhat-chaos/actions/krkn-hub@main
with:
QUAY_USER: ${{ secrets.QUAY_USER_1 }}
QUAY_TOKEN: ${{ secrets.QUAY_TOKEN_1 }}

View File

@@ -34,7 +34,7 @@ jobs:
- name: Check out Kraken
uses: actions/checkout@v3
- name: Checkout Pull Request
run: hub pr checkout ${{ github.event.issue.number }}
run: gh pr checkout ${{ github.event.issue.number }}
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
- name: Install OC CLI

View File

@@ -29,3 +29,15 @@ tunings:
wait_duration: 6 # Duration to wait between each chaos scenario.
iterations: 1 # Number of times to execute the scenarios.
daemon_mode: False # Iterations are set to infinity which means that the kraken will cause chaos forever.
telemetry:
enabled: False # enable/disables the telemetry collection feature
api_url: https://ulnmf9xv7j.execute-api.us-west-2.amazonaws.com/production #telemetry service endpoint
username: username # telemetry service username
password: password # telemetry service password
prometheus_backup: True # enables/disables prometheus data collection
full_prometheus_backup: False # if is set to False only the /prometheus/wal folder will be downloaded.
backup_threads: 5 # number of telemetry download/upload threads
archive_path: /tmp # local path where the archive files will be temporarly stored
max_retries: 0 # maximum number of upload retries (if 0 will retry forever)
run_tag: '' # if set, this will be appended to the run folder in the bucket (useful to group the runs)
archive_size: 10000 # the size of the prometheus data archive size in KB. The lower the size of archive is

View File

@@ -51,7 +51,7 @@ spec:
claimName: kraken-test-pvc
containers:
- name: kraken-test-container
image: 'image-registry.openshift-image-registry.svc:5000/openshift/httpd:latest'
image: 'quay.io/centos7/httpd-24-centos7:latest'
volumeMounts:
- mountPath: "/home/krake-dir/"
name: kraken-test-pv

View File

@@ -1,5 +1,6 @@
# Krkn aka Kraken
[![Docker Repository on Quay](https://quay.io/repository/redhat-chaos/krkn/status "Docker Repository on Quay")](https://quay.io/repository/redhat-chaos/krkn?tab=tags&tag=latest)
![Workflow-Status](https://github.com/redhat-chaos/krkn/actions/workflows/docker-image.yml/badge.svg)
![Krkn logo](media/logo.png)
@@ -29,6 +30,8 @@ The guide is hosted at https://redhat-chaos.github.io/krkn.
### How to Get Started
Instructions on how to setup, configure and run Kraken can be found at [Installation](docs/installation.md).
You may consider utilizing the chaos recommendation tool prior to initiating the chaos runs to profile the application service(s) under test. This tool discovers a list of Krkn scenarios with a high probability of causing failures or disruptions to your application service(s). The tool can be accessed at [Chaos-Recommender](utils/chaos_recommender/README.md).
See the [getting started doc](docs/getting_started.md) on support on how to get started with your own custom scenario or editing current scenarios for your specific usage.
After installation, refer back to the below sections for supported scenarios and how to tweak the kraken config to load them on your cluster.
@@ -59,12 +62,13 @@ Instructions on how to setup the config and the options supported can be found a
Scenario type | Kubernetes | OpenShift
--------------------------- | ------------- |--------------------|
[Pod Scenarios](docs/pod_scenarios.md) | :heavy_check_mark: | :heavy_check_mark: |
[Pod Network Scenarios](docs/pod_network_scenarios.md) | :x: | :heavy_check_mark: |
[Container Scenarios](docs/container_scenarios.md) | :heavy_check_mark: | :heavy_check_mark: |
[Node Scenarios](docs/node_scenarios.md) | :heavy_check_mark: | :heavy_check_mark: |
[Time Scenarios](docs/time_scenarios.md) | :x: | :heavy_check_mark: |
[Hog Scenarios: CPU, Memory](docs/arcaflow_scenarios.md) | :heavy_check_mark: | :heavy_check_mark: |
[Cluster Shut Down Scenarios](docs/cluster_shut_down_scenarios.md) | :heavy_check_mark: | :heavy_check_mark: |
[Namespace Scenarios](docs/namespace_scenarios.md) | :heavy_check_mark: | :heavy_check_mark: |
[Service Disruption Scenarios](docs/service_disruption_scenarios.md.md) | :heavy_check_mark: | :heavy_check_mark: |
[Zone Outage Scenarios](docs/zone_outage.md) | :heavy_check_mark: | :heavy_check_mark: |
[Application_outages](docs/application_outages.md) | :heavy_check_mark: | :heavy_check_mark: |
[PVC scenario](docs/pvc_scenario.md) | :heavy_check_mark: | :heavy_check_mark: |
@@ -105,11 +109,13 @@ Information on enabling and leveraging this feature can be found [here](docs/SLO
Kraken supports injecting faults into [Open Cluster Management (OCM)](https://open-cluster-management.io/) and [Red Hat Advanced Cluster Management for Kubernetes (ACM)](https://www.redhat.com/en/technologies/management/advanced-cluster-management) managed clusters through [ManagedCluster Scenarios](docs/managedcluster_scenarios.md).
### Blogs and other useful resources
- Blog post on introduction to Kraken: https://www.openshift.com/blog/introduction-to-kraken-a-chaos-tool-for-openshift/kubernetes
- Discussion and demo on how Kraken can be leveraged to ensure OpenShift is reliable, performant and scalable: https://www.youtube.com/watch?v=s1PvupI5sD0&ab_channel=OpenShift
- Blog post emphasizing the importance of making Chaos part of Performance and Scale runs to mimic the production environments: https://www.openshift.com/blog/making-chaos-part-of-kubernetes/openshift-performance-and-scalability-tests
- Blog post on findings from Chaos test runs: https://cloud.redhat.com/blog/openshift/kubernetes-chaos-stories
- Discussion with CNCF TAG App Delivery on Krkn workflow, features and addition to CNCF sandbox: [Github](https://github.com/cncf/sandbox/issues/44), [Tracker](https://github.com/cncf/tag-app-delivery/issues/465), [recording](https://www.youtube.com/watch?v=nXQkBFK_MWc&t=722s)
### Roadmap
@@ -127,5 +133,5 @@ Please read [this file]((CI/README.md#adding-a-test-case)) for more information
### Community
Key Members(slack_usernames/full name): paigerube14/Paige Rubendall, mffiedler/Mike Fiedler, ravielluri/Naga Ravi Chaitanya Elluri.
* [**#sig-scalability on Kubernetes Slack**](https://kubernetes.slack.com)
* [**#krkn on Kubernetes Slack**](https://kubernetes.slack.com)
* [**#forum-chaos on CoreOS Slack internal to Red Hat**](https://coreos.slack.com)

View File

@@ -2,10 +2,14 @@
Following are a list of enhancements that we are planning to work on adding support in Krkn. Of course any help/contributions are greatly appreciated.
- [Ability to run multiple chaos scenarios in parallel under load to mimic real world outages](https://github.com/redhat-chaos/krkn/issues/424)
- [Centralized storage for chaos experiments artifacts](https://github.com/redhat-chaos/krkn/issues/423)
- [Support for causing DNS outages](https://github.com/redhat-chaos/krkn/issues/394)
- [Support for pod level network traffic shaping](https://github.com/redhat-chaos/krkn/issues/393)
- [Ability to visualize the metrics that are being captured by Kraken and stored in Elasticsearch](https://github.com/redhat-chaos/krkn/issues/124)
- Support for running all the scenarios of Kraken on Kubernetes distribution - see https://github.com/redhat-chaos/krkn/issues/185, https://github.com/redhat-chaos/krkn/issues/186
- Continue to improve [Chaos Testing Guide](https://redhat-chaos.github.io/krkn) in terms of adding best practices, test environment recommendations and scenarios to make sure the OpenShift platform, as well the applications running on top it, are resilient and performant under chaotic conditions.
- [ ] [Ability to run multiple chaos scenarios in parallel under load to mimic real world outages](https://github.com/redhat-chaos/krkn/issues/424)
- [x] [Centralized storage for chaos experiments artifacts](https://github.com/redhat-chaos/krkn/issues/423)
- [ ] [Support for causing DNS outages](https://github.com/redhat-chaos/krkn/issues/394)
- [x] [Chaos recommender](https://github.com/redhat-chaos/krkn/tree/main/utils/chaos-recommender) to suggest scenarios having probability of impacting the service under test using profiling results
- [ ] Chaos AI integration to improve and automate test coverage
- [x] [Support for pod level network traffic shaping](https://github.com/redhat-chaos/krkn/issues/393)
- [ ] [Ability to visualize the metrics that are being captured by Kraken and stored in Elasticsearch](https://github.com/redhat-chaos/krkn/issues/124)
- [ ] Support for running all the scenarios of Kraken on Kubernetes distribution - see https://github.com/redhat-chaos/krkn/issues/185, https://github.com/redhat-chaos/krkn/issues/186
- [ ] Continue to improve [Chaos Testing Guide](https://redhat-chaos.github.io/krkn) in terms of adding best practices, test environment recommendations and scenarios to make sure the OpenShift platform, as well the applications running on top it, are resilient and performant under chaotic conditions.
- [ ] [Switch documentation references to Kubernetes](https://github.com/redhat-chaos/krkn/issues/495)
- [ ] [OCP and Kubernetes functionalities segregation](https://github.com/redhat-chaos/krkn/issues/497)

View File

@@ -16,6 +16,42 @@
description: etcd leader changes observed
severity: warning
- expr: (last_over_time(etcd_mvcc_db_total_size_in_bytes[5m]) / last_over_time(etcd_server_quota_backend_bytes[5m]))*100 > 95
description: etcd cluster database is running full.
severity: critical
- expr: (last_over_time(etcd_mvcc_db_total_size_in_use_in_bytes[5m]) / last_over_time(etcd_mvcc_db_total_size_in_bytes[5m])) < 0.5
description: etcd database size in use is less than 50% of the actual allocated storage.
severity: warning
- expr: rate(etcd_server_proposals_failed_total{job=~".*etcd.*"}[15m]) > 5
description: etcd cluster has high number of proposal failures.
severity: warning
- expr: histogram_quantile(0.99, rate(etcd_network_peer_round_trip_time_seconds_bucket{job=~".*etcd.*"}[5m])) > 0.15
description: etcd cluster member communication is slow.
severity: warning
- expr: histogram_quantile(0.99, sum(rate(grpc_server_handling_seconds_bucket{job=~".*etcd.*", grpc_method!="Defragment", grpc_type="unary"}[5m])) without(grpc_type)) > 0.15
description: etcd grpc requests are slow.
severity: critical
- expr: 100 * sum(rate(grpc_server_handled_total{job=~".*etcd.*", grpc_code=~"Unknown|FailedPrecondition|ResourceExhausted|Internal|Unavailable|DataLoss|DeadlineExceeded"}[5m])) without (grpc_type, grpc_code) / sum(rate(grpc_server_handled_total{job=~".*etcd.*"}[5m])) without (grpc_type, grpc_code) > 5
description: etcd cluster has high number of failed grpc requests.
severity: critical
- expr: etcd_server_has_leader{job=~".*etcd.*"} == 0
description: etcd cluster has no leader.
severity: warning
- expr: sum(up{job=~".*etcd.*"} == bool 1) without (instance) < ((count(up{job=~".*etcd.*"}) without (instance) + 1) / 2)
description: etcd cluster has insufficient number of members.
severity: warning
- expr: max without (endpoint) ( sum without (instance) (up{job=~".*etcd.*"} == bool 0) or count without (To) ( sum without (instance) (rate(etcd_network_peer_sent_failures_total{job=~".*etcd.*"}[120s])) > 0.01 )) > 0
description: etcd cluster members are down.
severity: warning
# API server
- expr: avg_over_time(histogram_quantile(0.99, sum(irate(apiserver_request_duration_seconds_bucket{apiserver="kube-apiserver", verb=~"POST|PUT|DELETE|PATCH", subresource!~"log|exec|portforward|attach|proxy"}[2m])) by (le, resource, verb))[10m:]) > 1
description: 10 minutes avg. 99th mutating API call latency for {{$labels.verb}}/{{$labels.resource}} higher than 1 second. {{$value}}s
@@ -40,7 +76,7 @@
- expr: up{namespace=~"openshift-etcd"} == 0
description: "{{$labels.namespace}}/{{$labels.pod}} down"
severity: error
severity: warning
- expr: up{namespace=~"openshift-.*(kube-controller-manager|scheduler|controller-manager|sdn|ovn-kubernetes|dns)"} == 0
description: "{{$labels.namespace}}/{{$labels.pod}} down"

View File

@@ -6,40 +6,41 @@ kraken:
signal_state: RUN # Will wait for the RUN signal when set to PAUSE before running the scenarios, refer docs/signal.md for more details
signal_address: 0.0.0.0 # Signal listening address
port: 8081 # Signal port
chaos_scenarios: # List of policies/chaos scenarios to load
- arcaflow_scenarios:
- scenarios/arcaflow/cpu-hog/input.yaml
- scenarios/arcaflow/memory-hog/input.yaml
- container_scenarios: # List of chaos pod scenarios to load
chaos_scenarios:
# List of policies/chaos scenarios to load
- arcaflow_scenarios:
- scenarios/arcaflow/cpu-hog/input.yaml
- scenarios/arcaflow/memory-hog/input.yaml
- scenarios/arcaflow/io-hog/input.yaml
- application_outages:
- scenarios/openshift/app_outage.yaml
- container_scenarios: # List of chaos pod scenarios to load
- - scenarios/openshift/container_etcd.yml
- plugin_scenarios:
- plugin_scenarios:
- scenarios/openshift/etcd.yml
- scenarios/openshift/regex_openshift_pod_kill.yml
- scenarios/openshift/vmware_node_scenarios.yml
- scenarios/openshift/ibmcloud_node_scenarios.yml
- scenarios/openshift/network_chaos_ingress.yml
- scenarios/openshift/pod_network_outage.yml
- node_scenarios: # List of chaos node scenarios to load
- scenarios/openshift/prom_kill.yml
- node_scenarios: # List of chaos node scenarios to load
- scenarios/openshift/node_scenarios_example.yml
- plugin_scenarios:
- plugin_scenarios:
- scenarios/openshift/openshift-apiserver.yml
- scenarios/openshift/openshift-kube-apiserver.yml
- time_scenarios: # List of chaos time scenarios to load
- time_scenarios: # List of chaos time scenarios to load
- scenarios/openshift/time_scenarios_example.yml
- cluster_shut_down_scenarios:
- cluster_shut_down_scenarios:
- - scenarios/openshift/cluster_shut_down_scenario.yml
- scenarios/openshift/post_action_shut_down.py
- namespace_scenarios:
- service_disruption_scenarios:
- - scenarios/openshift/regex_namespace.yaml
- - scenarios/openshift/ingress_namespace.yaml
- scenarios/openshift/post_action_namespace.py
- zone_outages:
- zone_outages:
- scenarios/openshift/zone_outage.yaml
- application_outages:
- scenarios/openshift/app_outage.yaml
- pvc_scenarios:
- pvc_scenarios:
- scenarios/openshift/pvc_scenario.yaml
- network_chaos:
- network_chaos:
- scenarios/openshift/network_chaos.yaml
cerberus:
@@ -58,9 +59,34 @@ performance_monitoring:
prometheus_bearer_token: # The bearer token is automatically obtained in case of OpenShift, please set it when the distribution is Kubernetes. This is needed to authenticate with prometheus.
uuid: # uuid for the run is generated by default if not set
enable_alerts: False # Runs the queries specified in the alert profile and displays the info or exits 1 when severity=error
alert_profile: config/alerts # Path to alert profile with the prometheus queries
alert_profile: config/alerts # Path or URL to alert profile with the prometheus queries
check_critical_alerts: False # When enabled will check prometheus for critical alerts firing post chaos
tunings:
wait_duration: 60 # Duration to wait between each chaos scenario
iterations: 1 # Number of times to execute the scenarios
daemon_mode: False # Iterations are set to infinity which means that the kraken will cause chaos forever
telemetry:
enabled: False # enable/disables the telemetry collection feature
api_url: https://ulnmf9xv7j.execute-api.us-west-2.amazonaws.com/production #telemetry service endpoint
username: username # telemetry service username
password: password # telemetry service password
prometheus_backup: True # enables/disables prometheus data collection
full_prometheus_backup: False # if is set to False only the /prometheus/wal folder will be downloaded.
backup_threads: 5 # number of telemetry download/upload threads
archive_path: /tmp # local path where the archive files will be temporarly stored
max_retries: 0 # maximum number of upload retries (if 0 will retry forever)
run_tag: '' # if set, this will be appended to the run folder in the bucket (useful to group the runs)
archive_size: 500000 # the size of the prometheus data archive size in KB. The lower the size of archive is
# the higher the number of archive files will be produced and uploaded (and processed by backup_threads
# simultaneously).
# For unstable/slow connection is better to keep this value low
# increasing the number of backup_threads, in this way, on upload failure, the retry will happen only on the
# failed chunk without affecting the whole upload.
logs_backup: True
logs_filter_patterns:
- "(\\w{3}\\s\\d{1,2}\\s\\d{2}:\\d{2}:\\d{2}\\.\\d+).+" # Sep 9 11:20:36.123425532
- "kinit (\\d+/\\d+/\\d+\\s\\d{2}:\\d{2}:\\d{2})\\s+" # kinit 2023/09/15 11:20:36 log
- "(\\d{4}-\\d{2}-\\d{2}T\\d{2}:\\d{2}:\\d{2}\\.\\d+Z).+" # 2023-09-15T11:20:36.123425532Z log
oc_cli_path: /usr/bin/oc # optional, if not specified will be search in $PATH
events_backup: True # enables/disables cluster events collection

View File

@@ -13,6 +13,7 @@ kraken:
- plugin_scenarios: # List of chaos pod scenarios to load
- scenarios/openshift/etcd.yml
- scenarios/openshift/regex_openshift_pod_kill.yml
- scenarios/openshift/prom_kill.yml
- node_scenarios: # List of chaos node scenarios to load
- scenarios/openshift/node_scenarios_example.yml
- plugin_scenarios:
@@ -20,13 +21,10 @@ kraken:
- scenarios/openshift/openshift-kube-apiserver.yml
- time_scenarios: # List of chaos time scenarios to load
- scenarios/openshift/time_scenarios_example.yml
- litmus_scenarios: # List of litmus scenarios to load
- - https://hub.litmuschaos.io/api/chaos/1.10.0?file=charts/generic/node-cpu-hog/rbac.yaml
- scenarios/openshift/node_cpu_hog_engine.yaml
- cluster_shut_down_scenarios:
- - scenarios/openshift/cluster_shut_down_scenario.yml
- scenarios/openshift/post_action_shut_down.py
- namespace_scenarios:
- service_disruption_scenarios:
- scenarios/openshift/regex_namespace.yaml
- scenarios/openshift/ingress_namespace.yaml
- zone_outages:
@@ -60,3 +58,27 @@ tunings:
wait_duration: 60 # Duration to wait between each chaos scenario
iterations: 1 # Number of times to execute the scenarios
daemon_mode: False # Iterations are set to infinity which means that the kraken will cause chaos forever
telemetry:
enabled: False # enable/disables the telemetry collection feature
api_url: https://ulnmf9xv7j.execute-api.us-west-2.amazonaws.com/production #telemetry service endpoint
username: username # telemetry service username
password: password # telemetry service password
prometheus_backup: True # enables/disables prometheus data collection
full_prometheus_backup: False # if is set to False only the /prometheus/wal folder will be downloaded.
backup_threads: 5 # number of telemetry download/upload threads
archive_path: /tmp # local path where the archive files will be temporarly stored
max_retries: 0 # maximum number of upload retries (if 0 will retry forever)
run_tag: '' # if set, this will be appended to the run folder in the bucket (useful to group the runs)
archive_size: 500000 # the size of the prometheus data archive size in KB. The lower the size of archive is
# the higher the number of archive files will be produced and uploaded (and processed by backup_threads
# simultaneously).
# For unstable/slow connection is better to keep this value low
# increasing the number of backup_threads, in this way, on upload failure, the retry will happen only on the
# failed chunk without affecting the whole upload.
logs_backup: True
logs_filter_patterns:
- "(\\w{3}\\s\\d{1,2}\\s\\d{2}:\\d{2}:\\d{2}\\.\\d+).+" # Sep 9 11:20:36.123425532
- "kinit (\\d+/\\d+/\\d+\\s\\d{2}:\\d{2}:\\d{2})\\s+" # kinit 2023/09/15 11:20:36 log
- "(\\d{4}-\\d{2}-\\d{2}T\\d{2}:\\d{2}:\\d{2}\\.\\d+Z).+" # 2023-09-15T11:20:36.123425532Z log
oc_cli_path: /usr/bin/oc # optional, if not specified will be search in $PATH

View File

@@ -139,6 +139,39 @@ metrics:
- query: histogram_quantile(0.99,sum(rate(etcd_request_duration_seconds_bucket[2m])) by (le,operation,apiserver)) > 0
metricName: P99APIEtcdRequestLatency
- query: sum(grpc_server_started_total{namespace="openshift-etcd",grpc_service="etcdserverpb.Watch",grpc_type="bidi_stream"}) - sum(grpc_server_handled_total{namespace="openshift-etcd",grpc_service="etcdserverpb.Watch",grpc_type="bidi_stream"})
metricName: ActiveWatchStreams
- query: sum(grpc_server_started_total{namespace="openshift-etcd",grpc_service="etcdserverpb.Lease",grpc_type="bidi_stream"}) - sum(grpc_server_handled_total{namespace="openshift-etcd",grpc_service="etcdserverpb.Lease",grpc_type="bidi_stream"})
metricName: ActiveLeaseStreams
- query: sum(rate(etcd_debugging_snap_save_total_duration_seconds_sum{namespace="openshift-etcd"}[2m]))
metricName: snapshotSaveLatency
- query: sum(rate(etcd_server_heartbeat_send_failures_total{namespace="openshift-etcd"}[2m]))
metricName: HeartBeatFailures
- query: sum(rate(etcd_server_health_failures{namespace="openshift-etcd"}[2m]))
metricName: HealthFailures
- query: sum(rate(etcd_server_slow_apply_total{namespace="openshift-etcd"}[2m]))
metricName: SlowApplies
- query: sum(rate(etcd_server_slow_read_indexes_total{namespace="openshift-etcd"}[2m]))
metricName: SlowIndexRead
- query: sum(etcd_server_proposals_pending)
metricName: PendingProposals
- query: histogram_quantile(1.0, sum(rate(etcd_debugging_mvcc_db_compaction_pause_duration_milliseconds_bucket[1m])) by (le, instance))
metricName: CompactionMaxPause
- query: sum by (instance) (apiserver_storage_objects)
metricName: etcdTotalObjectCount
- query: topk(500, max by(resource) (apiserver_storage_objects))
metricName: etcdTopObectCount
# Cluster metrics
- query: count(kube_namespace_created)
metricName: namespaceCount

View File

@@ -0,0 +1,29 @@
application: openshift-etcd
namespace: openshift-etcd
labels: app=openshift-etcd
kubeconfig: ~/.kube/config.yaml
prometheus_endpoint: <Prometheus_Endpoint>
auth_token: <Auth_Token>
scrape_duration: 10m
chaos_library: "kraken"
log_level: INFO
# for output purpose only do not change if not needed
chaos_tests:
GENERIC:
- pod_failure
- container_failure
- node_failure
- zone_outage
- time_skew
- namespace_failure
- power_outage
CPU:
- node_cpu_hog
NETWORK:
- application_outage
- node_network_chaos
- pod_network_chaos
MEM:
- node_memory_hog
- pvc_disk_fill

View File

@@ -1,29 +1,28 @@
# Dockerfile for kraken
FROM quay.io/openshift/origin-tests:latest as origintests
FROM mcr.microsoft.com/azure-cli:latest as azure-cli
FROM quay.io/centos/centos:stream9
FROM registry.access.redhat.com/ubi8/ubi:latest
LABEL org.opencontainers.image.authors="Red Hat OpenShift Chaos Engineering"
ENV KUBECONFIG /root/.kube/config
# Copy OpenShift CLI, Kubernetes CLI from origin-tests image
COPY --from=origintests /usr/bin/oc /usr/bin/oc
COPY --from=origintests /usr/bin/kubectl /usr/bin/kubectl
# Copy azure client binary from azure-cli image
COPY --from=azure-cli /usr/local/bin/az /usr/bin/az
# Install dependencies
RUN yum install epel-release -y && \
yum install -y git python39 python3-pip jq gettext && \
RUN yum install -y git python39 python3-pip jq gettext wget && \
python3.9 -m pip install -U pip && \
git clone https://github.com/redhat-chaos/krkn.git --branch v1.3.1 /root/kraken && \
git clone https://github.com/redhat-chaos/krkn.git --branch v1.5.0 /root/kraken && \
mkdir -p /root/.kube && cd /root/kraken && \
pip3.9 install -r requirements.txt
pip3.9 install -r requirements.txt && \
pip3.9 install virtualenv && \
wget https://github.com/mikefarah/yq/releases/latest/download/yq_linux_amd64 -O /usr/bin/yq && chmod +x /usr/bin/yq
# Get Kubernetes and OpenShift clients from stable releases
WORKDIR /tmp
RUN wget https://mirror.openshift.com/pub/openshift-v4/clients/ocp/stable/openshift-client-linux.tar.gz && tar -xvf openshift-client-linux.tar.gz && cp oc /usr/local/bin/oc && cp kubectl /usr/local/bin/kubectl
WORKDIR /root/kraken

View File

@@ -2,24 +2,28 @@
FROM ppc64le/centos:8
MAINTAINER Red Hat OpenShift Performance and Scale
FROM mcr.microsoft.com/azure-cli:latest as azure-cli
LABEL org.opencontainers.image.authors="Red Hat OpenShift Chaos Engineering"
ENV KUBECONFIG /root/.kube/config
RUN curl -L -o kubernetes-client-linux-ppc64le.tar.gz https://dl.k8s.io/v1.19.0/kubernetes-client-linux-ppc64le.tar.gz \
&& tar xf kubernetes-client-linux-ppc64le.tar.gz && mv kubernetes/client/bin/kubectl /usr/bin/ && rm -rf kubernetes-client-linux-ppc64le.tar.gz
RUN curl -L -o openshift-client-linux.tar.gz https://mirror.openshift.com/pub/openshift-v4/ppc64le/clients/ocp/stable/openshift-client-linux.tar.gz \
&& tar xf openshift-client-linux.tar.gz -C /usr/bin && rm -rf openshift-client-linux.tar.gz
# Copy azure client binary from azure-cli image
COPY --from=azure-cli /usr/local/bin/az /usr/bin/az
# Install dependencies
RUN yum install epel-release -y && \
yum install -y git python36 python3-pip gcc libffi-devel python36-devel openssl-devel gcc-c++ make jq gettext && \
git clone https://github.com/redhat-chaos/krkn.git --branch main /root/kraken && \
mkdir -p /root/.kube && cd /root/kraken && \
pip3 install cryptography==3.3.2 && \
pip3 install -r requirements.txt setuptools==40.3.0 urllib3==1.25.4
RUN yum install -y git python39 python3-pip jq gettext wget && \
python3.9 -m pip install -U pip && \
git clone https://github.com/redhat-chaos/krkn.git --branch v1.5.0 /root/kraken && \
mkdir -p /root/.kube && cd /root/kraken && \
pip3.9 install -r requirements.txt && \
pip3.9 install virtualenv && \
wget https://github.com/mikefarah/yq/releases/latest/download/yq_linux_amd64 -O /usr/bin/yq && chmod +x /usr/bin/yq
# Get Kubernetes and OpenShift clients from stable releases
WORKDIR /tmp
RUN wget https://mirror.openshift.com/pub/openshift-v4/clients/ocp/stable/openshift-client-linux.tar.gz && tar -xvf openshift-client-linux.tar.gz && cp oc /usr/local/bin/oc && cp kubectl /usr/local/bin/kubectl
WORKDIR /root/kraken
ENTRYPOINT python3 run_kraken.py --config=config/config.yaml
ENTRYPOINT python3.9 run_kraken.py --config=config/config.yaml

View File

@@ -1,27 +1,20 @@
### Kraken image
Container image gets automatically built by quay.io at [Kraken image](https://quay.io/redhat-chaos/krkn).
### Run containerized version
Refer [instructions](https://github.com/redhat-chaos/krkn/blob/main/docs/installation.md#run-containerized-version) for information on how to run the containerized version of kraken.
### Run Custom Kraken Image
Refer to [instructions](https://github.com/redhat-chaos/krkn/blob/main/containers/build_own_image-README.md) for information on how to run a custom containerized version of kraken using podman.
### Kraken as a KubeApp
### Kraken as a KubeApp ( Unsupported and not recommended )
#### GENERAL NOTES:
@@ -50,4 +43,4 @@ To run containerized Kraken as a Kubernetes/OpenShift Deployment, follow these s
8. Create a ConfigMap named scenarios-kube-config using `kubectl create configmap scenarios-kube-config --from-file=<path_to_kraken>/scenarios/kube`
9. Create a service account to run the kraken pod `kubectl create serviceaccount useroot`.
10. In Openshift, add privileges to service account and execute `oc adm policy add-scc-to-user privileged -z useroot`.
11. Create a Job using `kubectl apply -f <path_to_kraken>/containers/kraken.yml` and monitor the status using `oc get jobs` and `oc get pods`.
11. Create a Job using `kubectl apply -f <path_to_kraken>/containers/kraken.yml` and monitor the status using `oc get jobs` and `oc get pods`.

View File

@@ -1,13 +1,13 @@
# Building your own Kraken image
1. Git clone the Kraken repository using `git clone https://github.com/openshift-scale/kraken.git`.
1. Git clone the Kraken repository using `git clone https://github.com/redhat-chaos/krkn.git`.
2. Modify the python code and yaml files to address your needs.
3. Execute `podman build -t <new_image_name>:latest .` in the containers directory within kraken to build an image from a Dockerfile.
4. Execute `podman run --detach --name <container_name> <new_image_name>:latest` to start a container based on your new image.
# Building the Kraken image on IBM Power (ppc64le)
1. Git clone the Kraken repository using `git clone https://github.com/cloud-bulldozer/kraken.git` on an IBM Power Systems server.
1. Git clone the Kraken repository using `git clone https://github.com/redhat-chaos/krkn.git` on an IBM Power Systems server.
2. Modify the python code and yaml files to address your needs.
3. Execute `podman build -t <new_image_name>:latest -f Dockerfile-ppc64le` in the containers directory within kraken to build an image from the Dockerfile for Power.
4. Execute `podman run --detach --name <container_name> <new_image_name>:latest` to start a container based on your new image.

View File

@@ -23,7 +23,7 @@ performance_monitoring:
```
#### Alert profile
A couple of [alert profiles](https://github.com/redhat-chaos/krkn/tree/main/config) [alerts](https://github.com/redhat-chaos/krkn/blob/main/config/alerts) are shipped by default and can be tweaked to add more queries to alert on. The following are a few alerts examples:
A couple of [alert profiles](https://github.com/redhat-chaos/krkn/tree/main/config) [alerts](https://github.com/redhat-chaos/krkn/blob/main/config/alerts) are shipped by default and can be tweaked to add more queries to alert on. User can provide a URL or path to the file in the [config](https://github.com/redhat-chaos/krkn/blob/main/config/config.yaml). The following are a few alerts examples:
```
- expr: avg_over_time(histogram_quantile(0.99, rate(etcd_disk_wal_fsync_duration_seconds_bucket[2m]))[5m:]) > 0.01

View File

@@ -7,6 +7,7 @@ The engine uses containers to execute plugins and runs them either locally in Do
#### Hog scenarios:
- [CPU Hog](arcaflow_scenarios/cpu_hog.md)
- [Memory Hog](arcaflow_scenarios/memory_hog.md)
- [I/O Hog](arcaflow_scenarios/io_hog.md)
### Prequisites
@@ -64,4 +65,6 @@ Each step is represented by a container that will be executed from the deployer
Note that we provide the scenarios as a template, but they can be manipulated to define more complex workflows.
To have more details regarding the arcaflow workflows architecture and syntax it is suggested to refer to the [Arcaflow Documentation](https://arcalot.io/arcaflow/).
This edit is no longer in quay image
Working on fix in ticket: https://issues.redhat.com/browse/CHAOS-494
This will effect all versions 4.12 and higher of OpenShift

View File

@@ -0,0 +1,21 @@
# I/O Hog
This scenario is based on the arcaflow [arcaflow-plugin-stressng](https://github.com/arcalot/arcaflow-plugin-stressng) plugin.
The purpose of this scenario is to create disk pressure on a particular node of the Kubernetes/OpenShift cluster for a time span.
The scenario allows to attach a node path to the pod as a `hostPath` volume.
To enable this plugin add the pointer to the scenario input file `scenarios/arcaflow/io-hog/input.yaml` as described in the
Usage section.
This scenario takes a list of objects named `input_list` with the following properties:
- **kubeconfig :** *string* the kubeconfig needed by the deployer to deploy the sysbench plugin in the target cluster
- **namespace :** *string* the namespace where the scenario container will be deployed
**Note:** this parameter will be automatically filled by kraken if the `kubeconfig_path` property is correctly set
- **node_selector :** *key-value map* the node label that will be used as `nodeSelector` by the pod to target a specific cluster node
- **duration :** *string* stop stress test after N seconds. One can also specify the units of time in seconds, minutes, hours, days or years with the suffix s, m, h, d or y.
- **target_pod_folder :** *string* the path in the pod where the volume is mounted
- **target_pod_volume :** *object* the `hostPath` volume definition in the [Kubernetes/OpenShift](https://docs.openshift.com/container-platform/3.11/install_config/persistent_storage/using_hostpath.html) format, that will be attached to the pod as a volume
- **io_write_bytes :** *string* writes N bytes for each hdd process. The size can be expressed as % of free space on the file system or in units of Bytes, KBytes, MBytes and GBytes using the suffix b, k, m or g
- **io_block_size :** *string* size of each write in bytes. Size can be from 1 byte to 4m.
To perform several load tests in the same run simultaneously (eg. stress two or more nodes in the same run) add another item
to the `input_list` with the same properties (and eventually different values eg. different node_selectors
to schedule the pod on different nodes). To reduce (or increase) the parallelism change the value `parallelism` in `workload.yaml` file

View File

@@ -8,14 +8,14 @@ The following are the components of Kubernetes/OpenShift for which a basic chaos
```
scenarios:
- name: "<Name of scenario>"
- name: "<name of scenario>"
namespace: "<specific namespace>" # can specify "*" if you want to find in all namespaces
label_selector: "<label of pod(s)>"
container_name: "<specific container name>" # This is optional, can take out and will kill all containers in all pods found under namespace and label
pod_names: # This is optional, can take out and will select all pods with given namespace and label
- <pod_name>
count: <number of containers to disrupt, default=1>
action: <Action to run. For example kill 1 ( hang up ) or kill 9. Default is set to kill 1>
action: <kill signal to run. For example 1 ( hang up ) or 9. Default is set to 1>
expected_recovery_time: <number of seconds to wait for container to be running again> (defaults to 120seconds)
```

View File

@@ -3,14 +3,19 @@
The following ways are supported to run Kraken:
- Standalone python program through Git.
- Containerized version using either Podman or Docker as the runtime.
- Kubernetes or OpenShift deployment.
- Containerized version using either Podman or Docker as the runtime via [Krkn-hub](https://github.com/redhat-chaos/krkn-hub)
- Kubernetes or OpenShift deployment ( unsupported )
**NOTE**: It is recommended to run Kraken external to the cluster ( Standalone or Containerized ) hitting the Kubernetes/OpenShift API as running it internal to the cluster might be disruptive to itself and also might not report back the results if the chaos leads to cluster's API server instability.
**NOTE**: To run Kraken on Power (ppc64le) architecture, build and run a containerized version by following the
instructions given [here](https://github.com/redhat-chaos/krkn/blob/main/containers/build_own_image-README.md).
**NOTE**: Helper functions for interactions in Krkn are part of [krkn-lib](https://github.com/redhat-chaos/krkn-lib).
Please feel free to reuse and expand them as you see fit when adding a new scenario or expanding
the capabilities of the current supported scenarios.
### Git
#### Clone the repository
@@ -35,26 +40,12 @@ $ python3.9 run_kraken.py --config <config_file_location>
```
### Run containerized version
Assuming that the latest docker ( 17.05 or greater with multi-build support ) is installed on the host, run:
```
$ docker pull quay.io/redhat-chaos/krkn:latest
$ docker run --name=kraken --net=host -v <path_to_kubeconfig>:/root/.kube/config:Z -v <path_to_kraken_config>:/root/kraken/config/config.yaml:Z -d quay.io/redhat-chaos/krkn:latest
$ docker run --name=kraken --net=host -v <path_to_kubeconfig>:/root/.kube/config:Z -v <path_to_kraken_config>:/root/kraken/config/config.yaml:Z -v <path_to_scenarios_directory>:/root/kraken/scenarios:Z -d quay.io/redhat-chaos/krkn:latest #custom or tweaked scenario configs
$ docker logs -f kraken
```
[Krkn-hub](https://github.com/redhat-chaos/krkn-hub) is a wrapper that allows running Krkn chaos scenarios via podman or docker runtime with scenario parameters/configuration defined as environment variables.
Similarly, podman can be used to achieve the same:
```
$ podman pull quay.io/redhat-chaos/krkn
$ podman run --name=kraken --net=host -v <path_to_kubeconfig>:/root/.kube/config:Z -v <path_to_kraken_config>:/root/kraken/config/config.yaml:Z -d quay.io/redhat-chaos/krkn:latest
$ podman run --name=kraken --net=host -v <path_to_kubeconfig>:/root/.kube/config:Z -v <path_to_kraken_config>:/root/kraken/config/config.yaml:Z -v <path_to_scenarios_directory>:/root/kraken/scenarios:Z -d quay.io/redhat-chaos/krkn:latest #custom or tweaked scenario configs
$ podman logs -f kraken
```
If you want to build your own kraken image see [here](https://github.com/redhat-chaos/krkn/blob/main/containers/build_own_image-README.md)
Refer [instructions](https://github.com/redhat-chaos/krkn-hub#supported-chaos-scenarios) to get started.
### Run Kraken as a Kubernetes deployment
### Run Kraken as a Kubernetes deployment ( unsupported option - standalone or containerized deployers are recommended )
Refer [Instructions](https://github.com/redhat-chaos/krkn/blob/main/containers/README.md) on how to deploy and run Kraken as a Kubernetes/OpenShift deployment.

View File

@@ -1,3 +1,5 @@
## Pod network Scenarios
### Pod outage
Scenario to block the traffic ( Ingress/Egress ) of a pod matching the labels for the specified duration of time to understand the behavior of the service/other services which depend on it during downtime. This helps with planning the requirements accordingly, be it improving the timeouts or tweaking the alerts etc.
With the current network policies, it is not possible to explicitly block ports which are enabled by allowed network policy rule. This chaos scenario addresses this issue by using OVS flow rules to block ports related to the pod. It supports OpenShiftSDN and OVNKubernetes based networks.
@@ -13,3 +15,23 @@ With the current network policies, it is not possible to explicitly block ports
- 8443 # Blocks 8443, Default [], i.e. all ports.
label_selector: 'component=ui' # Blocks access to openshift console
```
### Pod Network shaping
Scenario to introduce network latency, packet loss, and bandwidth restriction in the Pod's network interface. The purpose of this scenario is to observe faults caused by random variations in the network.
##### Sample scenario config for egress traffic shaping (using plugin)
```
- id: pod_egress_shaping
config:
namespace: openshift-console # Required - Namespace of the pod to which filter need to be applied.
label_selector: 'component=ui' # Applies traffic shaping to access openshift console.
network_params:
latency: 500ms # Add 500ms latency to egress traffic from the pod.
```
##### Steps
- Pick the pods to introduce the network anomaly either from label_selector or pod_name.
- Identify the pod interface name on the node.
- Set traffic shaping config on pod's interface using tc and netem.
- Wait for the duration time.
- Remove traffic shaping config on pod's interface.
- Remove the job that spawned the pod.

View File

@@ -1,6 +1,6 @@
### Delete Namespace Scenarios
### Service Disruption Scenarios (Previously Delete Namespace Scenario)
Using this type of scenario configuration one is able to delete a specific namespace, or a namespace matching a certain regex string.
Using this type of scenario configuration one is able to delete crucial objects in a specific namespace, or a namespace matching a certain regex string.
Configuration Options:
@@ -27,12 +27,20 @@ scenarios:
sleep: 15
```
**NOTE:** Many openshift namespaces have finalizers built that protect the namespace from being fully deleted: see documentation [here](https://kubernetes.io/blog/2021/05/14/using-finalizers-to-control-deletion/).
The namespaces that do have finalizers enabled will be in left in a terminating state but all the pods running on that namespace will get deleted.
### Steps
This scenario will select a namespace (or multiple) dependent on the configuration and will kill all of the below object types in that namespace and will wait for them to be Running in the post action
1. Services
2. Daemonsets
3. Statefulsets
4. Replicasets
5. Deployments
#### Post Action
In all scenarios we do a post chaos check to wait and verify the specific component.
We do a post chaos check to wait and verify the specific objects in each namespace are Ready
Here there are two options:
@@ -47,8 +55,8 @@ See [scenarios/post_action_namespace.py](https://github.com/cloud-bulldozer/krak
```
2. Allow kraken to wait and check the killed namespaces become 'Active' again. Kraken keeps a list of the specific
namespaces that were killed to verify all that were affected recover properly.
1. Allow kraken to wait and check all killed objects in the namespaces become 'Running' again. Kraken keeps a list of the specific
objects in namespaces that were killed to verify all that were affected recover properly.
```
wait_time: <seconds to wait for namespace to recover>

View File

@@ -4,25 +4,43 @@ import time
import kraken.cerberus.setup as cerberus
from jinja2 import Template
import kraken.invoke.command as runcommand
from krkn_lib.telemetry.k8s import KrknTelemetryKubernetes
from krkn_lib.models.telemetry import ScenarioTelemetry
from krkn_lib.utils.functions import get_yaml_item_value, log_exception
# Reads the scenario config, applies and deletes a network policy to
# block the traffic for the specified duration
def run(scenarios_list, config, wait_duration):
def run(scenarios_list, config, wait_duration, telemetry: KrknTelemetryKubernetes) -> (list[str], list[ScenarioTelemetry]):
failed_post_scenarios = ""
scenario_telemetries: list[ScenarioTelemetry] = []
failed_scenarios = []
for app_outage_config in scenarios_list:
scenario_telemetry = ScenarioTelemetry()
scenario_telemetry.scenario = app_outage_config
scenario_telemetry.startTimeStamp = time.time()
telemetry.set_parameters_base64(scenario_telemetry, app_outage_config)
if len(app_outage_config) > 1:
with open(app_outage_config, "r") as f:
app_outage_config_yaml = yaml.full_load(f)
scenario_config = app_outage_config_yaml["application_outage"]
pod_selector = scenario_config.get("pod_selector", "{}")
traffic_type = scenario_config.get("block", "[Ingress, Egress]")
namespace = scenario_config.get("namespace", "")
duration = scenario_config.get("duration", 60)
try:
with open(app_outage_config, "r") as f:
app_outage_config_yaml = yaml.full_load(f)
scenario_config = app_outage_config_yaml["application_outage"]
pod_selector = get_yaml_item_value(
scenario_config, "pod_selector", "{}"
)
traffic_type = get_yaml_item_value(
scenario_config, "block", "[Ingress, Egress]"
)
namespace = get_yaml_item_value(
scenario_config, "namespace", ""
)
duration = get_yaml_item_value(
scenario_config, "duration", 60
)
start_time = int(time.time())
start_time = int(time.time())
network_policy_template = """---
network_policy_template = """---
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
@@ -31,28 +49,38 @@ spec:
podSelector:
matchLabels: {{ pod_selector }}
policyTypes: {{ traffic_type }}
"""
t = Template(network_policy_template)
rendered_spec = t.render(pod_selector=pod_selector, traffic_type=traffic_type)
# Write the rendered template to a file
with open("kraken_network_policy.yaml", "w") as f:
f.write(rendered_spec)
# Block the traffic by creating network policy
logging.info("Creating the network policy")
runcommand.invoke(
"kubectl create -f %s -n %s --validate=false" % ("kraken_network_policy.yaml", namespace)
)
"""
t = Template(network_policy_template)
rendered_spec = t.render(pod_selector=pod_selector, traffic_type=traffic_type)
# Write the rendered template to a file
with open("kraken_network_policy.yaml", "w") as f:
f.write(rendered_spec)
# Block the traffic by creating network policy
logging.info("Creating the network policy")
runcommand.invoke(
"kubectl create -f %s -n %s --validate=false" % ("kraken_network_policy.yaml", namespace)
)
# wait for the specified duration
logging.info("Waiting for the specified duration in the config: %s" % (duration))
time.sleep(duration)
# wait for the specified duration
logging.info("Waiting for the specified duration in the config: %s" % (duration))
time.sleep(duration)
# unblock the traffic by deleting the network policy
logging.info("Deleting the network policy")
runcommand.invoke("kubectl delete -f %s -n %s" % ("kraken_network_policy.yaml", namespace))
# unblock the traffic by deleting the network policy
logging.info("Deleting the network policy")
runcommand.invoke("kubectl delete -f %s -n %s" % ("kraken_network_policy.yaml", namespace))
logging.info("End of scenario. Waiting for the specified duration: %s" % (wait_duration))
time.sleep(wait_duration)
logging.info("End of scenario. Waiting for the specified duration: %s" % (wait_duration))
time.sleep(wait_duration)
end_time = int(time.time())
cerberus.publish_kraken_status(config, failed_post_scenarios, start_time, end_time)
except Exception as e :
scenario_telemetry.exitStatus = 1
failed_scenarios.append(app_outage_config)
log_exception(app_outage_config)
else:
scenario_telemetry.exitStatus = 0
scenario_telemetry.endTimeStamp = time.time()
scenario_telemetries.append(scenario_telemetry)
return failed_scenarios, scenario_telemetries
end_time = int(time.time())
cerberus.publish_kraken_status(config, failed_post_scenarios, start_time, end_time)

View File

@@ -1,27 +1,37 @@
import time
import arcaflow
import os
import yaml
import logging
import sys
from pathlib import Path
from typing import List
from .context_auth import ContextAuth
from krkn_lib.telemetry.k8s import KrknTelemetryKubernetes
from krkn_lib.models.telemetry import ScenarioTelemetry
def run(scenarios_list: List[str], kubeconfig_path: str):
def run(scenarios_list: List[str], kubeconfig_path: str, telemetry: KrknTelemetryKubernetes) -> (list[str], list[ScenarioTelemetry]):
scenario_telemetries: list[ScenarioTelemetry] = []
failed_post_scenarios = []
for scenario in scenarios_list:
scenario_telemetry = ScenarioTelemetry()
scenario_telemetry.scenario = scenario
scenario_telemetry.startTimeStamp = time.time()
telemetry.set_parameters_base64(scenario_telemetry,scenario)
engine_args = build_args(scenario)
run_workflow(engine_args, kubeconfig_path)
status_code = run_workflow(engine_args, kubeconfig_path)
scenario_telemetry.endTimeStamp = time.time()
scenario_telemetry.exitStatus = status_code
scenario_telemetries.append(scenario_telemetry)
if status_code != 0:
failed_post_scenarios.append(scenario)
return failed_post_scenarios, scenario_telemetries
def run_workflow(engine_args: arcaflow.EngineArgs, kubeconfig_path: str):
def run_workflow(engine_args: arcaflow.EngineArgs, kubeconfig_path: str) -> int:
set_arca_kubeconfig(engine_args, kubeconfig_path)
exit_status = arcaflow.run(engine_args)
if exit_status != 0:
logging.error(
f"failed to run arcaflow scenario {engine_args.input}"
)
sys.exit(exit_status)
return exit_status
def build_args(input_file: str) -> arcaflow.EngineArgs:

View File

@@ -0,0 +1,3 @@
from .analysis import *
from .kraken_tests import *
from .prometheus import *

View File

@@ -0,0 +1,90 @@
import logging
import pandas as pd
import kraken.chaos_recommender.kraken_tests as kraken_tests
import time
threshold = .7 # Adjust the threshold as needed
heatmap_cpu_threshold = .5
heatmap_mem_threshold = .5
KRAKEN_TESTS_PATH = "./kraken_chaos_tests.txt"
#Placeholder, this should be done with topology
def return_critical_services():
return ["web", "cart"]
def load_telemetry_data(file_path):
data = pd.read_csv(file_path, delimiter=r"\s+")
return data
def calculate_zscores(data):
zscores = pd.DataFrame()
zscores["Service"] = data["service"]
zscores["CPU"] = (data["CPU"] - data["CPU"].mean()) / data["CPU"].std()
zscores["Memory"] = (data["MEM"] - data["MEM"].mean()) / data["MEM"].std()
zscores["Network"] = (data["NETWORK"] - data["NETWORK"].mean()) / data["NETWORK"].std()
return zscores
def identify_outliers(data):
outliers_cpu = data[data["CPU"] > threshold]["Service"].tolist()
outliers_memory = data[data["Memory"] > threshold]["Service"].tolist()
outliers_network = data[data["Network"] > threshold]["Service"].tolist()
return outliers_cpu, outliers_memory, outliers_network
def get_services_above_heatmap_threshold(dataframe, cpu_threshold, mem_threshold):
# Filter the DataFrame based on CPU_HEATMAP and MEM_HEATMAP thresholds
filtered_df = dataframe[((dataframe['CPU']/dataframe['CPU_LIMITS']) > cpu_threshold)]
# Get the lists of services
cpu_services = filtered_df['service'].tolist()
filtered_df = dataframe[((dataframe['MEM']/dataframe['MEM_LIMITS']) > mem_threshold)]
mem_services = filtered_df['service'].tolist()
return cpu_services, mem_services
def analysis(file_path, chaos_tests_config):
# Load the telemetry data from file
data = load_telemetry_data(file_path)
# Calculate Z-scores for CPU, Memory, and Network columns
zscores = calculate_zscores(data)
# Identify outliers
outliers_cpu, outliers_memory, outliers_network = identify_outliers(zscores)
cpu_services, mem_services = get_services_above_heatmap_threshold(data, heatmap_cpu_threshold, heatmap_mem_threshold)
# Display the identified outliers
logging.info("======================== Profiling ==================================")
logging.info(f"CPU outliers: {outliers_cpu}")
logging.info(f"Memory outliers: {outliers_memory}")
logging.info(f"Network outliers: {outliers_network}")
logging.info("===================== HeatMap Analysis ==============================")
if cpu_services:
logging.info("Services with CPU_HEATMAP above threshold:", cpu_services)
else:
logging.info("There are no services that are using siginificant CPU compared to their assigned limits (infinite in case no limits are set).")
if mem_services:
logging.info("Services with MEM_HEATMAP above threshold:", mem_services)
else:
logging.info("There are no services that are using siginificant MEMORY compared to their assigned limits (infinite in case no limits are set).")
time.sleep(2)
logging.info("======================= Recommendations =============================")
if cpu_services:
logging.info(f"Recommended tests for {str(cpu_services)} :\n {chaos_tests_config['CPU']}")
logging.info("\n")
if mem_services:
logging.info(f"Recommended tests for {str(mem_services)} :\n {chaos_tests_config['MEM']}")
logging.info("\n")
if outliers_network:
logging.info(f"Recommended tests for str(outliers_network) :\n {chaos_tests_config['NETWORK']}")
logging.info("\n")
logging.info("\n")
logging.info("Please check data in utilisation.txt for further analysis")

View File

@@ -0,0 +1,30 @@
def get_entries_by_category(filename, category):
# Read the file
with open(filename, 'r') as file:
content = file.read()
# Split the content into sections based on the square brackets
sections = content.split('\n\n')
# Define the categories
valid_categories = ['CPU', 'NETWORK', 'MEM', 'GENERIC']
# Validate the provided category
if category not in valid_categories:
return []
# Find the section corresponding to the specified category
target_section = None
for section in sections:
if section.startswith(f"[{category}]"):
target_section = section
break
# If the category section was not found, return an empty list
if target_section is None:
return []
# Extract the entries from the category section
entries = [entry.strip() for entry in target_section.split('\n') if entry and not entry.startswith('[')]
return entries

View File

@@ -0,0 +1,96 @@
import logging
import pandas
from prometheus_api_client import PrometheusConnect
import pandas as pd
import urllib3
saved_metrics_path = "./utilisation.txt"
def convert_data_to_dataframe(data, label):
df = pd.DataFrame()
df['service'] = [item['metric']['pod'] for item in data]
df[label] = [item['value'][1] for item in data]
return df
def convert_data(data, service):
result = {}
for entry in data:
pod_name = entry['metric']['pod']
value = entry['value'][1]
result[pod_name] = value
return result.get(service, '100000000000') # for those pods whose limits are not defined they can take as much resources, there assigning a very high value
def save_utilization_to_file(cpu_data, cpu_limits_result, mem_data, mem_limits_result, network_data, filename):
df_cpu = convert_data_to_dataframe(cpu_data, "CPU")
merged_df = pd.DataFrame(columns=['service','CPU','CPU_LIMITS','MEM','MEM_LIMITS','NETWORK'])
services = df_cpu.service.unique()
logging.info(services)
for s in services:
new_row_df = pd.DataFrame( {"service": s, "CPU" : convert_data(cpu_data, s),
"CPU_LIMITS" : convert_data(cpu_limits_result, s),
"MEM" : convert_data(mem_data, s), "MEM_LIMITS" : convert_data(mem_limits_result, s),
"NETWORK" : convert_data(network_data, s)}, index=[0])
merged_df = pd.concat([merged_df, new_row_df], ignore_index=True)
# Convert columns to string
merged_df['CPU'] = merged_df['CPU'].astype(str)
merged_df['MEM'] = merged_df['MEM'].astype(str)
merged_df['CPU_LIMITS'] = merged_df['CPU_LIMITS'].astype(str)
merged_df['MEM_LIMITS'] = merged_df['MEM_LIMITS'].astype(str)
merged_df['NETWORK'] = merged_df['NETWORK'].astype(str)
# Extract integer part before the decimal point
merged_df['CPU'] = merged_df['CPU'].str.split('.').str[0]
merged_df['MEM'] = merged_df['MEM'].str.split('.').str[0]
merged_df['CPU_LIMITS'] = merged_df['CPU_LIMITS'].str.split('.').str[0]
merged_df['MEM_LIMITS'] = merged_df['MEM_LIMITS'].str.split('.').str[0]
merged_df['NETWORK'] = merged_df['NETWORK'].str.split('.').str[0]
merged_df.to_csv(filename, sep='\t', index=False)
def fetch_utilization_from_prometheus(prometheus_endpoint, auth_token, namespace, scrape_duration):
urllib3.disable_warnings()
prometheus = PrometheusConnect(url=prometheus_endpoint, headers={'Authorization':'Bearer {}'.format(auth_token)}, disable_ssl=True)
# Fetch CPU utilization
cpu_query = 'sum (rate (container_cpu_usage_seconds_total{image!="", namespace="%s"}[%s])) by (pod) *1000' % (namespace,scrape_duration)
logging.info(cpu_query)
cpu_result = prometheus.custom_query(cpu_query)
cpu_data = cpu_result
cpu_limits_query = '(sum by (pod) (kube_pod_container_resource_limits{resource="cpu", namespace="%s"}))*1000' %(namespace)
logging.info(cpu_limits_query)
cpu_limits_result = prometheus.custom_query(cpu_limits_query)
mem_query = 'sum by (pod) (avg_over_time(container_memory_usage_bytes{image!="", namespace="%s"}[%s]))' % (namespace, scrape_duration)
logging.info(mem_query)
mem_result = prometheus.custom_query(mem_query)
mem_data = mem_result
mem_limits_query = 'sum by (pod) (kube_pod_container_resource_limits{resource="memory", namespace="%s"}) ' %(namespace)
logging.info(mem_limits_query)
mem_limits_result = prometheus.custom_query(mem_limits_query)
network_query = 'sum by (pod) ((avg_over_time(container_network_transmit_bytes_total{namespace="%s"}[%s])) + \
(avg_over_time(container_network_receive_bytes_total{namespace="%s"}[%s])))' % (namespace, scrape_duration, namespace, scrape_duration)
network_result = prometheus.custom_query(network_query)
logging.info(network_query)
network_data = network_result
save_utilization_to_file(cpu_data, cpu_limits_result, mem_data, mem_limits_result, network_data, saved_metrics_path)
return saved_metrics_path

View File

@@ -3,7 +3,10 @@ import logging
import urllib.request
import shutil
import sys
import requests
import tempfile
import kraken.prometheus.client as prometheus
from urllib.parse import urlparse
def setup(url):
@@ -72,6 +75,14 @@ def alerts(distribution, prometheus_url, prometheus_bearer_token, start_time, en
Scrapes metrics defined in the profile from Prometheus and alerts based on the severity defined
"""
is_url = urlparse(alert_profile)
if is_url.scheme and is_url.netloc:
response = requests.get(alert_profile)
temp_alerts = tempfile.NamedTemporaryFile()
temp_alerts.write(response.content)
temp_alerts.flush()
alert_profile = temp_alerts.name
if not prometheus_url:
if distribution == "openshift":
logging.info("Looks like prometheus_url is not defined, trying to use the default instance on the cluster")
@@ -79,7 +90,7 @@ def alerts(distribution, prometheus_url, prometheus_bearer_token, start_time, en
distribution, prometheus_url, prometheus_bearer_token
)
else:
logging.error("Looks like proemtheus url is not defined, exiting")
logging.error("Looks like prometheus url is not defined, exiting")
sys.exit(1)
command = (
"./kube-burner check-alerts "

View File

@@ -1,14 +1,13 @@
import kraken.invoke.command as runcommand
import krkn_lib_kubernetes
import logging
import time
import sys
import requests
import yaml
import kraken.cerberus.setup as cerberus
from krkn_lib.k8s import KrknKubernetes
# krkn_lib_kubernetes
# krkn_lib
# Inject litmus scenarios defined in the config
def run(
scenarios_list,
@@ -16,7 +15,7 @@ def run(
litmus_uninstall,
wait_duration,
litmus_namespace,
kubecli: krkn_lib_kubernetes.KrknLibKubernetes
kubecli: KrknKubernetes
):
# Loop to run the scenarios starts here
for l_scenario in scenarios_list:
@@ -94,8 +93,8 @@ def deploy_all_experiments(version_string, namespace):
)
# krkn_lib_kubernetes
def wait_for_initialized(engine_name, experiment_name, namespace, kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
# krkn_lib
def wait_for_initialized(engine_name, experiment_name, namespace, kubecli: KrknKubernetes):
chaos_engine = kubecli.get_litmus_chaos_object(kind='chaosengine', name=engine_name,
namespace=namespace).engineStatus
@@ -119,13 +118,13 @@ def wait_for_initialized(engine_name, experiment_name, namespace, kubecli: krkn_
return True
# krkn_lib_kubernetes
# krkn_lib
def wait_for_status(
engine_name,
expected_status,
experiment_name,
namespace,
kubecli: krkn_lib_kubernetes.KrknLibKubernetes
kubecli: KrknKubernetes
):
if expected_status == "running":
@@ -156,8 +155,8 @@ def wait_for_status(
# Check status of experiment
# krkn_lib_kubernetes
def check_experiment(engine_name, experiment_name, namespace, kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
# krkn_lib
def check_experiment(engine_name, experiment_name, namespace, kubecli: KrknKubernetes):
wait_response = wait_for_status(engine_name, "running", experiment_name, namespace, kubecli)
@@ -183,8 +182,8 @@ def check_experiment(engine_name, experiment_name, namespace, kubecli: krkn_lib_
# Delete all chaos engines in a given namespace
# krkn_lib_kubernetes
def delete_chaos_experiments(namespace, kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
# krkn_lib
def delete_chaos_experiments(namespace, kubecli: KrknKubernetes):
if kubecli.check_if_namespace_exists(namespace):
chaos_exp_exists = runcommand.invoke_no_exit("kubectl get chaosexperiment")
@@ -194,8 +193,8 @@ def delete_chaos_experiments(namespace, kubecli: krkn_lib_kubernetes.KrknLibKube
# Delete all chaos engines in a given namespace
# krkn_lib_kubernetes
def delete_chaos(namespace, kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
# krkn_lib
def delete_chaos(namespace, kubecli:KrknKubernetes):
if kubecli.check_if_namespace_exists(namespace):
logging.info("Deleting all litmus run objects")
@@ -209,8 +208,8 @@ def delete_chaos(namespace, kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
logging.info(namespace + " namespace doesn't exist")
# krkn_lib_kubernetes
def uninstall_litmus(version, litmus_namespace, kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
# krkn_lib
def uninstall_litmus(version, litmus_namespace, kubecli: KrknKubernetes):
if kubecli.check_if_namespace_exists(litmus_namespace):
logging.info("Uninstalling Litmus operator")

View File

@@ -1,14 +1,14 @@
import random
import logging
import krkn_lib_kubernetes
from krkn_lib.k8s import KrknKubernetes
# krkn_lib_kubernetes
# krkn_lib
# Pick a random managedcluster with specified label selector
def get_managedcluster(
managedcluster_name,
label_selector,
instance_kill_count,
kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
kubecli: KrknKubernetes):
if managedcluster_name in kubecli.list_killable_managedclusters():
return [managedcluster_name]
@@ -30,12 +30,12 @@ def get_managedcluster(
# Wait until the managedcluster status becomes Available
# krkn_lib_kubernetes
def wait_for_available_status(managedcluster, timeout, kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
# krkn_lib
def wait_for_available_status(managedcluster, timeout, kubecli: KrknKubernetes):
kubecli.watch_managedcluster_status(managedcluster, "True", timeout)
# Wait until the managedcluster status becomes Not Available
# krkn_lib_kubernetes
def wait_for_unavailable_status(managedcluster, timeout, kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
# krkn_lib
def wait_for_unavailable_status(managedcluster, timeout, kubecli: KrknKubernetes):
kubecli.watch_managedcluster_status(managedcluster, "Unknown", timeout)

View File

@@ -4,19 +4,17 @@ import time
import logging
import sys
import yaml
import html
import krkn_lib_kubernetes
import kraken.managedcluster_scenarios.common_managedcluster_functions as common_managedcluster_functions
from krkn_lib.k8s import KrknKubernetes
class GENERAL:
def __init__(self):
pass
# krkn_lib_kubernetes
# krkn_lib
class managedcluster_scenarios():
kubecli: krkn_lib_kubernetes.KrknLibKubernetes
def __init__(self, kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
kubecli: KrknKubernetes
def __init__(self, kubecli: KrknKubernetes):
self.kubecli = kubecli
self.general = GENERAL()

View File

@@ -1,20 +1,20 @@
import yaml
import logging
import time
import krkn_lib_kubernetes
from kraken.managedcluster_scenarios.managedcluster_scenarios import managedcluster_scenarios
import kraken.managedcluster_scenarios.common_managedcluster_functions as common_managedcluster_functions
import kraken.cerberus.setup as cerberus
from krkn_lib.k8s import KrknKubernetes
from krkn_lib.utils.functions import get_yaml_item_value
# Get the managedcluster scenarios object of specfied cloud type
# krkn_lib_kubernetes
def get_managedcluster_scenario_object(managedcluster_scenario, kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
# krkn_lib
def get_managedcluster_scenario_object(managedcluster_scenario, kubecli: KrknKubernetes):
return managedcluster_scenarios(kubecli)
# Run defined scenarios
# krkn_lib_kubernetes
def run(scenarios_list, config, wait_duration, kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
# krkn_lib
def run(scenarios_list, config, wait_duration, kubecli: KrknKubernetes):
for managedcluster_scenario_config in scenarios_list:
with open(managedcluster_scenario_config, "r") as f:
managedcluster_scenario_config = yaml.full_load(f)
@@ -32,14 +32,22 @@ def run(scenarios_list, config, wait_duration, kubecli: krkn_lib_kubernetes.Krkn
# Inject the specified managedcluster scenario
# krkn_lib_kubernetes
def inject_managedcluster_scenario(action, managedcluster_scenario, managedcluster_scenario_object, kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
# krkn_lib
def inject_managedcluster_scenario(action, managedcluster_scenario, managedcluster_scenario_object, kubecli: KrknKubernetes):
# Get the managedcluster scenario configurations
run_kill_count = managedcluster_scenario.get("runs", 1)
instance_kill_count = managedcluster_scenario.get("instance_count", 1)
managedcluster_name = managedcluster_scenario.get("managedcluster_name", "")
label_selector = managedcluster_scenario.get("label_selector", "")
timeout = managedcluster_scenario.get("timeout", 120)
run_kill_count = get_yaml_item_value(
managedcluster_scenario, "runs", 1
)
instance_kill_count = get_yaml_item_value(
managedcluster_scenario, "instance_count", 1
)
managedcluster_name = get_yaml_item_value(
managedcluster_scenario, "managedcluster_name", ""
)
label_selector = get_yaml_item_value(
managedcluster_scenario, "label_selector", ""
)
timeout = get_yaml_item_value(managedcluster_scenario, "timeout", 120)
# Get the managedcluster to apply the scenario
if managedcluster_name:
managedcluster_name_list = managedcluster_name.split(",")

View File

@@ -1,107 +0,0 @@
import time
import random
import logging
import krkn_lib_kubernetes
import kraken.cerberus.setup as cerberus
import kraken.post_actions.actions as post_actions
import yaml
import sys
# krkn_lib_kubernetes
def run(
scenarios_list,
config,
wait_duration,
failed_post_scenarios,
kubeconfig_path,
kubecli: krkn_lib_kubernetes.KrknLibKubernetes
):
for scenario_config in scenarios_list:
if len(scenario_config) > 1:
pre_action_output = post_actions.run(kubeconfig_path, scenario_config[1])
else:
pre_action_output = ""
with open(scenario_config[0], "r") as f:
scenario_config_yaml = yaml.full_load(f)
for scenario in scenario_config_yaml["scenarios"]:
scenario_namespace = scenario.get("namespace", "")
scenario_label = scenario.get("label_selector", "")
if scenario_namespace is not None and scenario_namespace.strip() != "":
if scenario_label is not None and scenario_label.strip() != "":
logging.error("You can only have namespace or label set in your namespace scenario")
logging.error(
"Current scenario config has namespace '%s' and label selector '%s'"
% (scenario_namespace, scenario_label)
)
logging.error(
"Please set either namespace to blank ('') or label_selector to blank ('') to continue"
)
sys.exit(1)
delete_count = scenario.get("delete_count", 1)
run_count = scenario.get("runs", 1)
run_sleep = scenario.get("sleep", 10)
wait_time = scenario.get("wait_time", 30)
killed_namespaces = []
start_time = int(time.time())
for i in range(run_count):
namespaces = kubecli.check_namespaces([scenario_namespace], scenario_label)
for j in range(delete_count):
if len(namespaces) == 0:
logging.error(
"Couldn't delete %s namespaces, not enough namespaces matching %s with label %s"
% (str(run_count), scenario_namespace, str(scenario_label))
)
sys.exit(1)
selected_namespace = namespaces[random.randint(0, len(namespaces) - 1)]
killed_namespaces.append(selected_namespace)
try:
kubecli.delete_namespace(selected_namespace)
logging.info("Delete on namespace %s was successful" % str(selected_namespace))
except Exception as e:
logging.info("Delete on namespace %s was unsuccessful" % str(selected_namespace))
logging.info("Namespace action error: " + str(e))
sys.exit(1)
namespaces.remove(selected_namespace)
logging.info("Waiting %s seconds between namespace deletions" % str(run_sleep))
time.sleep(run_sleep)
logging.info("Waiting for the specified duration: %s" % wait_duration)
time.sleep(wait_duration)
if len(scenario_config) > 1:
try:
failed_post_scenarios = post_actions.check_recovery(
kubeconfig_path, scenario_config, failed_post_scenarios, pre_action_output
)
except Exception as e:
logging.error("Failed to run post action checks: %s" % e)
sys.exit(1)
else:
failed_post_scenarios = check_active_namespace(killed_namespaces, wait_time, kubecli)
end_time = int(time.time())
cerberus.publish_kraken_status(config, failed_post_scenarios, start_time, end_time)
# krkn_lib_kubernetes
def check_active_namespace(killed_namespaces, wait_time, kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
active_namespace = []
timer = 0
while timer < wait_time and killed_namespaces:
for namespace_name in killed_namespaces:
if namespace_name in kubecli.list_namespaces():
response = kubecli.get_namespace_status(namespace_name).strip()
if response != "Active":
continue
else:
active_namespace.append(namespace_name)
killed_namespaces = set(killed_namespaces) - set(active_namespace)
if len(killed_namespaces) == 0:
return []
timer += 5
time.sleep(5)
logging.info("Waiting 5 seconds for namespaces to become active")
logging.error("Namespaces are still not active after waiting " + str(wait_time) + "seconds")
logging.error("Non active namespaces " + str(killed_namespaces))
return killed_namespaces

View File

@@ -1,99 +1,130 @@
import yaml
import logging
import time
import sys
import os
import random
import krkn_lib_kubernetes
from jinja2 import Environment, FileSystemLoader
import kraken.cerberus.setup as cerberus
import kraken.node_actions.common_node_functions as common_node_functions
from jinja2 import Environment, FileSystemLoader
from krkn_lib.k8s import KrknKubernetes
from krkn_lib.telemetry.k8s import KrknTelemetryKubernetes
from krkn_lib.models.telemetry import ScenarioTelemetry
from krkn_lib.utils.functions import get_yaml_item_value, log_exception
# krkn_lib_kubernetes
# krkn_lib
# Reads the scenario config and introduces traffic variations in Node's host network interface.
def run(scenarios_list, config, wait_duration, kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
def run(scenarios_list, config, wait_duration, kubecli: KrknKubernetes, telemetry: KrknTelemetryKubernetes) -> (list[str], list[ScenarioTelemetry]):
failed_post_scenarios = ""
logging.info("Runing the Network Chaos tests")
failed_post_scenarios = ""
scenario_telemetries: list[ScenarioTelemetry] = []
failed_scenarios = []
for net_config in scenarios_list:
with open(net_config, "r") as file:
param_lst = ["latency", "loss", "bandwidth"]
test_config = yaml.safe_load(file)
test_dict = test_config["network_chaos"]
test_duration = int(test_dict.get("duration", 300))
test_interface = test_dict.get("interfaces", [])
test_node = test_dict.get("node_name", "")
test_node_label = test_dict.get("label_selector", "node-role.kubernetes.io/master")
test_execution = test_dict.get("execution", "serial")
test_instance_count = test_dict.get("instance_count", 1)
test_egress = test_dict.get("egress", {"bandwidth": "100mbit"})
if test_node:
node_name_list = test_node.split(",")
else:
node_name_list = [test_node]
nodelst = []
for single_node_name in node_name_list:
nodelst.extend(common_node_functions.get_node(single_node_name, test_node_label, test_instance_count, kubecli))
file_loader = FileSystemLoader(os.path.abspath(os.path.dirname(__file__)))
env = Environment(loader=file_loader, autoescape=True)
pod_template = env.get_template("pod.j2")
test_interface = verify_interface(test_interface, nodelst, pod_template, kubecli)
joblst = []
egress_lst = [i for i in param_lst if i in test_egress]
chaos_config = {
"network_chaos": {
"duration": test_duration,
"interfaces": test_interface,
"node_name": ",".join(nodelst),
"execution": test_execution,
"instance_count": test_instance_count,
"egress": test_egress,
scenario_telemetry = ScenarioTelemetry()
scenario_telemetry.scenario = net_config
scenario_telemetry.startTimeStamp = time.time()
telemetry.set_parameters_base64(scenario_telemetry, net_config)
try:
with open(net_config, "r") as file:
param_lst = ["latency", "loss", "bandwidth"]
test_config = yaml.safe_load(file)
test_dict = test_config["network_chaos"]
test_duration = int(
get_yaml_item_value(test_dict, "duration", 300)
)
test_interface = get_yaml_item_value(
test_dict, "interfaces", []
)
test_node = get_yaml_item_value(test_dict, "node_name", "")
test_node_label = get_yaml_item_value(
test_dict, "label_selector",
"node-role.kubernetes.io/master"
)
test_execution = get_yaml_item_value(
test_dict, "execution", "serial"
)
test_instance_count = get_yaml_item_value(
test_dict, "instance_count", 1
)
test_egress = get_yaml_item_value(
test_dict, "egress", {"bandwidth": "100mbit"}
)
if test_node:
node_name_list = test_node.split(",")
else:
node_name_list = [test_node]
nodelst = []
for single_node_name in node_name_list:
nodelst.extend(common_node_functions.get_node(single_node_name, test_node_label, test_instance_count, kubecli))
file_loader = FileSystemLoader(os.path.abspath(os.path.dirname(__file__)))
env = Environment(loader=file_loader, autoescape=True)
pod_template = env.get_template("pod.j2")
test_interface = verify_interface(test_interface, nodelst, pod_template, kubecli)
joblst = []
egress_lst = [i for i in param_lst if i in test_egress]
chaos_config = {
"network_chaos": {
"duration": test_duration,
"interfaces": test_interface,
"node_name": ",".join(nodelst),
"execution": test_execution,
"instance_count": test_instance_count,
"egress": test_egress,
}
}
}
logging.info("Executing network chaos with config \n %s" % yaml.dump(chaos_config))
job_template = env.get_template("job.j2")
try:
for i in egress_lst:
for node in nodelst:
exec_cmd = get_egress_cmd(
test_execution, test_interface, i, test_dict["egress"], duration=test_duration
)
logging.info("Executing %s on node %s" % (exec_cmd, node))
job_body = yaml.safe_load(
job_template.render(jobname=i + str(hash(node))[:5], nodename=node, cmd=exec_cmd)
)
joblst.append(job_body["metadata"]["name"])
api_response = kubecli.create_job(job_body)
if api_response is None:
raise Exception("Error creating job")
if test_execution == "serial":
logging.info("Waiting for serial job to finish")
logging.info("Executing network chaos with config \n %s" % yaml.dump(chaos_config))
job_template = env.get_template("job.j2")
try:
for i in egress_lst:
for node in nodelst:
exec_cmd = get_egress_cmd(
test_execution, test_interface, i, test_dict["egress"], duration=test_duration
)
logging.info("Executing %s on node %s" % (exec_cmd, node))
job_body = yaml.safe_load(
job_template.render(jobname=i + str(hash(node))[:5], nodename=node, cmd=exec_cmd)
)
joblst.append(job_body["metadata"]["name"])
api_response = kubecli.create_job(job_body)
if api_response is None:
raise Exception("Error creating job")
if test_execution == "serial":
logging.info("Waiting for serial job to finish")
start_time = int(time.time())
wait_for_job(joblst[:], kubecli, test_duration + 300)
logging.info("Waiting for wait_duration %s" % wait_duration)
time.sleep(wait_duration)
end_time = int(time.time())
cerberus.publish_kraken_status(config, failed_post_scenarios, start_time, end_time)
if test_execution == "parallel":
break
if test_execution == "parallel":
logging.info("Waiting for parallel job to finish")
start_time = int(time.time())
wait_for_job(joblst[:], kubecli, test_duration + 300)
logging.info("Waiting for wait_duration %s" % wait_duration)
time.sleep(wait_duration)
end_time = int(time.time())
cerberus.publish_kraken_status(config, failed_post_scenarios, start_time, end_time)
if test_execution == "parallel":
break
if test_execution == "parallel":
logging.info("Waiting for parallel job to finish")
start_time = int(time.time())
wait_for_job(joblst[:], kubecli, test_duration + 300)
logging.info("Waiting for wait_duration %s" % wait_duration)
time.sleep(wait_duration)
end_time = int(time.time())
cerberus.publish_kraken_status(config, failed_post_scenarios, start_time, end_time)
except Exception as e:
logging.error("Network Chaos exiting due to Exception %s" % e)
sys.exit(1)
finally:
logging.info("Deleting jobs")
delete_job(joblst[:], kubecli)
except Exception as e:
logging.error("Network Chaos exiting due to Exception %s" % e)
raise RuntimeError()
finally:
logging.info("Deleting jobs")
delete_job(joblst[:], kubecli)
except (RuntimeError, Exception):
scenario_telemetry.exitStatus = 1
failed_scenarios.append(net_config)
log_exception(net_config)
else:
scenario_telemetry.exitStatus = 0
scenario_telemetries.append(scenario_telemetry)
return failed_scenarios, scenario_telemetries
# krkn_lib_kubernetes
def verify_interface(test_interface, nodelst, template, kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
# krkn_lib
def verify_interface(test_interface, nodelst, template, kubecli: KrknKubernetes):
pod_index = random.randint(0, len(nodelst) - 1)
pod_body = yaml.safe_load(template.render(nodename=nodelst[pod_index]))
logging.info("Creating pod to query interface on node %s" % nodelst[pod_index])
@@ -110,23 +141,24 @@ def verify_interface(test_interface, nodelst, template, kubecli: krkn_lib_kubern
for interface in test_interface:
if interface not in interface_lst:
logging.error("Interface %s not found in node %s interface list %s" % (interface, nodelst[pod_index], interface_lst))
sys.exit(1)
#sys.exit(1)
raise RuntimeError()
return test_interface
finally:
logging.info("Deleteing pod to query interface on node")
kubecli.delete_pod("fedtools", "default")
# krkn_lib_kubernetes
def get_job_pods(api_response, kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
# krkn_lib
def get_job_pods(api_response, kubecli: KrknKubernetes):
controllerUid = api_response.metadata.labels["controller-uid"]
pod_label_selector = "controller-uid=" + controllerUid
pods_list = kubecli.list_pods(label_selector=pod_label_selector, namespace="default")
return pods_list[0]
# krkn_lib_kubernetes
def wait_for_job(joblst, kubecli: krkn_lib_kubernetes.KrknLibKubernetes, timeout=300):
# krkn_lib
def wait_for_job(joblst, kubecli: KrknKubernetes, timeout=300):
waittime = time.time() + timeout
count = 0
joblen = len(joblst)
@@ -144,8 +176,8 @@ def wait_for_job(joblst, kubecli: krkn_lib_kubernetes.KrknLibKubernetes, timeout
time.sleep(5)
# krkn_lib_kubernetes
def delete_job(joblst, kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
# krkn_lib
def delete_job(joblst, kubecli: KrknKubernetes):
for jobname in joblst:
try:
api_response = kubecli.get_job_status(jobname, namespace="default")
@@ -158,7 +190,7 @@ def delete_job(joblst, kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
logging.error(pod_log)
except Exception:
logging.warning("Exception in getting job status")
api_response = kubecli.delete_job(name=jobname, namespace="default")
kubecli.delete_job(name=jobname, namespace="default")
def get_egress_cmd(execution, test_interface, mod, vallst, duration=30):

View File

@@ -2,12 +2,12 @@ import sys
import logging
import kraken.invoke.command as runcommand
import kraken.node_actions.common_node_functions as nodeaction
import krkn_lib_kubernetes
from krkn_lib.k8s import KrknKubernetes
# krkn_lib_kubernetes
# krkn_lib
class abstract_node_scenarios:
kubecli: krkn_lib_kubernetes.KrknLibKubernetes
def __init__(self, kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
kubecli: KrknKubernetes
def __init__(self, kubecli: KrknKubernetes):
self.kubecli = kubecli
# Node scenario to start the node
def node_start_scenario(self, instance_kill_count, node, timeout):

View File

@@ -1,14 +1,14 @@
import sys
import time
import krkn_lib_kubernetes
import logging
import kraken.node_actions.common_node_functions as nodeaction
import os
import json
from aliyunsdkcore.client import AcsClient
from aliyunsdkecs.request.v20140526 import DescribeInstancesRequest, DeleteInstanceRequest
from aliyunsdkecs.request.v20140526 import StopInstanceRequest, StartInstanceRequest, RebootInstanceRequest
import logging
import kraken.node_actions.common_node_functions as nodeaction
from kraken.node_actions.abstract_node_scenarios import abstract_node_scenarios
import os
import json
from krkn_lib.k8s import KrknKubernetes
class Alibaba:
@@ -180,9 +180,9 @@ class Alibaba:
logging.info("ECS %s is released" % instance_id)
return True
# krkn_lib_kubernetes
# krkn_lib
class alibaba_node_scenarios(abstract_node_scenarios):
def __init__(self,kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
def __init__(self,kubecli: KrknKubernetes):
self.alibaba = Alibaba()
# Node scenario to start the node

View File

@@ -2,10 +2,9 @@ import sys
import time
import boto3
import logging
import krkn_lib_kubernetes
import kraken.node_actions.common_node_functions as nodeaction
from kraken.node_actions.abstract_node_scenarios import abstract_node_scenarios
from krkn_lib.k8s import KrknKubernetes
class AWS:
def __init__(self):
@@ -27,7 +26,9 @@ class AWS:
logging.error(
"Failed to start node instance %s. Encountered following " "exception: %s." % (instance_id, e)
)
sys.exit(1)
# removed_exit
# sys.exit(1)
raise RuntimeError()
# Stop the node instance
def stop_instances(self, instance_id):
@@ -36,7 +37,9 @@ class AWS:
logging.info("EC2 instance: " + str(instance_id) + " stopped")
except Exception as e:
logging.error("Failed to stop node instance %s. Encountered following " "exception: %s." % (instance_id, e))
sys.exit(1)
# removed_exit
# sys.exit(1)
raise RuntimeError()
# Terminate the node instance
def terminate_instances(self, instance_id):
@@ -47,7 +50,9 @@ class AWS:
logging.error(
"Failed to terminate node instance %s. Encountered following " "exception: %s." % (instance_id, e)
)
sys.exit(1)
# removed_exit
# sys.exit(1)
raise RuntimeError()
# Reboot the node instance
def reboot_instances(self, instance_id):
@@ -58,7 +63,9 @@ class AWS:
logging.error(
"Failed to reboot node instance %s. Encountered following " "exception: %s." % (instance_id, e)
)
sys.exit(1)
# removed_exit
# sys.exit(1)
raise RuntimeError()
# Below functions poll EC2.Client.describe_instances() every 15 seconds
# until a successful state is reached. An error is returned after 40 failed checks
@@ -102,7 +109,9 @@ class AWS:
"Failed to create the default network_acl: %s"
"Make sure you have aws cli configured on the host and set for the region of your vpc/subnet" % (e)
)
sys.exit(1)
# removed_exit
# sys.exit(1)
raise RuntimeError()
return acl_id
# Replace network acl association
@@ -114,7 +123,9 @@ class AWS:
new_association_id = status["NewAssociationId"]
except Exception as e:
logging.error("Failed to replace network acl association: %s" % (e))
sys.exit(1)
# removed_exit
# sys.exit(1)
raise RuntimeError()
return new_association_id
# Describe network acl
@@ -131,7 +142,9 @@ class AWS:
"Failed to describe network acl: %s."
"Make sure you have aws cli configured on the host and set for the region of your vpc/subnet" % (e)
)
sys.exit(1)
# removed_exit
# sys.exit(1)
raise RuntimeError()
associations = response["NetworkAcls"][0]["Associations"]
# grab the current network_acl in use
original_acl_id = response["NetworkAcls"][0]["Associations"][0]["NetworkAclId"]
@@ -148,11 +161,13 @@ class AWS:
"Make sure you have aws cli configured on the host and set for the region of your vpc/subnet"
% (acl_id, e)
)
sys.exit(1)
# removed_exit
# sys.exit(1)
raise RuntimeError()
# krkn_lib_kubernetes
# krkn_lib
class aws_node_scenarios(abstract_node_scenarios):
def __init__(self, kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
def __init__(self, kubecli: KrknKubernetes):
super().__init__(kubecli)
self.aws = AWS()
@@ -173,7 +188,9 @@ class aws_node_scenarios(abstract_node_scenarios):
"Failed to start node instance. Encountered following " "exception: %s. Test Failed" % (e)
)
logging.error("node_start_scenario injection failed!")
sys.exit(1)
# removed_exit
# sys.exit(1)
raise RuntimeError()
# Node scenario to stop the node
def node_stop_scenario(self, instance_kill_count, node, timeout):
@@ -189,7 +206,9 @@ class aws_node_scenarios(abstract_node_scenarios):
except Exception as e:
logging.error("Failed to stop node instance. Encountered following exception: %s. " "Test Failed" % (e))
logging.error("node_stop_scenario injection failed!")
sys.exit(1)
# removed_exit
# sys.exit(1)
raise RuntimeError()
# Node scenario to terminate the node
def node_termination_scenario(self, instance_kill_count, node, timeout):
@@ -213,7 +232,9 @@ class aws_node_scenarios(abstract_node_scenarios):
"Failed to terminate node instance. Encountered following exception:" " %s. Test Failed" % (e)
)
logging.error("node_termination_scenario injection failed!")
sys.exit(1)
# removed_exit
# sys.exit(1)
raise RuntimeError()
# Node scenario to reboot the node
def node_reboot_scenario(self, instance_kill_count, node, timeout):
@@ -232,4 +253,6 @@ class aws_node_scenarios(abstract_node_scenarios):
"Failed to reboot node instance. Encountered following exception:" " %s. Test Failed" % (e)
)
logging.error("node_reboot_scenario injection failed!")
sys.exit(1)
# removed_exit
# sys.exit(1)
raise RuntimeError()

View File

@@ -1,13 +1,14 @@
import sys
import time
from azure.mgmt.compute import ComputeManagementClient
from azure.identity import DefaultAzureCredential
import yaml
import kraken.invoke.command as runcommand
import logging
import krkn_lib_kubernetes
import kraken.node_actions.common_node_functions as nodeaction
from kraken.node_actions.abstract_node_scenarios import abstract_node_scenarios
import kraken.invoke.command as runcommand
import yaml
from azure.mgmt.compute import ComputeManagementClient
from azure.identity import DefaultAzureCredential
from krkn_lib.k8s import KrknKubernetes
class Azure:
@@ -39,7 +40,9 @@ class Azure:
logging.info("vm name " + str(vm_name) + " started")
except Exception as e:
logging.error("Failed to start node instance %s. Encountered following " "exception: %s." % (vm_name, e))
sys.exit(1)
# removed_exit
# sys.exit(1)
raise RuntimeError()
# Stop the node instance
def stop_instances(self, group_name, vm_name):
@@ -48,7 +51,9 @@ class Azure:
logging.info("vm name " + str(vm_name) + " stopped")
except Exception as e:
logging.error("Failed to stop node instance %s. Encountered following " "exception: %s." % (vm_name, e))
sys.exit(1)
# removed_exit
# sys.exit(1)
raise RuntimeError()
# Terminate the node instance
def terminate_instances(self, group_name, vm_name):
@@ -59,7 +64,9 @@ class Azure:
logging.error(
"Failed to terminate node instance %s. Encountered following " "exception: %s." % (vm_name, e)
)
sys.exit(1)
# removed_exit
# sys.exit(1)
raise RuntimeError()
# Reboot the node instance
def reboot_instances(self, group_name, vm_name):
@@ -68,7 +75,9 @@ class Azure:
logging.info("vm name " + str(vm_name) + " rebooted")
except Exception as e:
logging.error("Failed to reboot node instance %s. Encountered following " "exception: %s." % (vm_name, e))
sys.exit(1)
# removed_exit
# sys.exit(1)
raise RuntimeError()
def get_vm_status(self, resource_group, vm_name):
statuses = self.compute_client.virtual_machines.instance_view(resource_group, vm_name).statuses
@@ -121,9 +130,9 @@ class Azure:
logging.info("Vm %s is terminated" % vm_name)
return True
# krkn_lib_kubernetes
# krkn_lib
class azure_node_scenarios(abstract_node_scenarios):
def __init__(self, kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
def __init__(self, kubecli: KrknKubernetes):
super().__init__(kubecli)
logging.info("init in azure")
self.azure = Azure()
@@ -145,7 +154,9 @@ class azure_node_scenarios(abstract_node_scenarios):
"Failed to start node instance. Encountered following " "exception: %s. Test Failed" % (e)
)
logging.error("node_start_scenario injection failed!")
sys.exit(1)
# removed_exit
# sys.exit(1)
raise RuntimeError()
# Node scenario to stop the node
def node_stop_scenario(self, instance_kill_count, node, timeout):
@@ -161,7 +172,9 @@ class azure_node_scenarios(abstract_node_scenarios):
except Exception as e:
logging.error("Failed to stop node instance. Encountered following exception: %s. " "Test Failed" % e)
logging.error("node_stop_scenario injection failed!")
sys.exit(1)
# removed_exit
# sys.exit(1)
raise RuntimeError()
# Node scenario to terminate the node
def node_termination_scenario(self, instance_kill_count, node, timeout):
@@ -185,7 +198,9 @@ class azure_node_scenarios(abstract_node_scenarios):
"Failed to terminate node instance. Encountered following exception:" " %s. Test Failed" % (e)
)
logging.error("node_termination_scenario injection failed!")
sys.exit(1)
# removed_exit
# sys.exit(1)
raise RuntimeError()
# Node scenario to reboot the node
def node_reboot_scenario(self, instance_kill_count, node, timeout):
@@ -204,4 +219,6 @@ class azure_node_scenarios(abstract_node_scenarios):
"Failed to reboot node instance. Encountered following exception:" " %s. Test Failed" % (e)
)
logging.error("node_reboot_scenario injection failed!")
sys.exit(1)
# removed_exit
# sys.exit(1)
raise RuntimeError()

View File

@@ -1,6 +1,5 @@
import kraken.node_actions.common_node_functions as nodeaction
from kraken.node_actions.abstract_node_scenarios import abstract_node_scenarios
import krkn_lib_kubernetes
import logging
import openshift as oc
import pyipmi
@@ -8,7 +7,7 @@ import pyipmi.interfaces
import sys
import time
import traceback
from krkn_lib.k8s import KrknKubernetes
class BM:
def __init__(self, bm_info, user, passwd):
@@ -105,9 +104,9 @@ class BM:
while self.get_ipmi_connection(bmc_addr, node_name).get_chassis_status().power_on:
time.sleep(1)
# krkn_lib_kubernetes
# krkn_lib
class bm_node_scenarios(abstract_node_scenarios):
def __init__(self, bm_info, user, passwd, kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
def __init__(self, bm_info, user, passwd, kubecli: KrknKubernetes):
super().__init__(kubecli)
self.bm = BM(bm_info, user, passwd)

View File

@@ -2,14 +2,13 @@ import time
import random
import logging
import paramiko
import krkn_lib_kubernetes
import kraken.invoke.command as runcommand
from krkn_lib.k8s import KrknKubernetes
node_general = False
# Pick a random node with specified label selector
def get_node(node_name, label_selector, instance_kill_count, kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
def get_node(node_name, label_selector, instance_kill_count, kubecli: KrknKubernetes):
if node_name in kubecli.list_killable_nodes():
return [node_name]
elif node_name:
@@ -29,21 +28,21 @@ def get_node(node_name, label_selector, instance_kill_count, kubecli: krkn_lib_k
return nodes_to_return
# krkn_lib_kubernetes
# krkn_lib
# Wait until the node status becomes Ready
def wait_for_ready_status(node, timeout, kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
def wait_for_ready_status(node, timeout, kubecli: KrknKubernetes):
resource_version = kubecli.get_node_resource_version(node)
kubecli.watch_node_status(node, "True", timeout, resource_version)
# krkn_lib_kubernetes
# krkn_lib
# Wait until the node status becomes Not Ready
def wait_for_not_ready_status(node, timeout, kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
def wait_for_not_ready_status(node, timeout, kubecli: KrknKubernetes):
resource_version = kubecli.get_node_resource_version(node)
kubecli.watch_node_status(node, "False", timeout, resource_version)
# krkn_lib_kubernetes
# krkn_lib
# Wait until the node status becomes Unknown
def wait_for_unknown_status(node, timeout, kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
def wait_for_unknown_status(node, timeout, kubecli: KrknKubernetes):
resource_version = kubecli.get_node_resource_version(node)
kubecli.watch_node_status(node, "Unknown", timeout, resource_version)

View File

@@ -1,10 +1,9 @@
import kraken.node_actions.common_node_functions as nodeaction
from kraken.node_actions.abstract_node_scenarios import abstract_node_scenarios
import krkn_lib_kubernetes
import logging
import sys
import docker
from krkn_lib.k8s import KrknKubernetes
class Docker:
def __init__(self):
@@ -37,7 +36,7 @@ class Docker:
class docker_node_scenarios(abstract_node_scenarios):
def __init__(self, kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
def __init__(self, kubecli: KrknKubernetes):
super().__init__(kubecli)
self.docker = Docker()

View File

@@ -1,13 +1,12 @@
import sys
import time
import logging
import krkn_lib_kubernetes
import kraken.node_actions.common_node_functions as nodeaction
from kraken.node_actions.abstract_node_scenarios import abstract_node_scenarios
from googleapiclient import discovery
from oauth2client.client import GoogleCredentials
import kraken.invoke.command as runcommand
from krkn_lib.k8s import KrknKubernetes
class GCP:
def __init__(self):
@@ -45,7 +44,9 @@ class GCP:
logging.error(
"Failed to start node instance %s. Encountered following " "exception: %s." % (instance_id, e)
)
sys.exit(1)
# removed_exit
# sys.exit(1)
raise RuntimeError()
# Stop the node instance
def stop_instances(self, zone, instance_id):
@@ -54,7 +55,9 @@ class GCP:
logging.info("vm name " + str(instance_id) + " stopped")
except Exception as e:
logging.error("Failed to stop node instance %s. Encountered following " "exception: %s." % (instance_id, e))
sys.exit(1)
# removed_exit
# sys.exit(1)
raise RuntimeError()
# Start the node instance
def suspend_instances(self, zone, instance_id):
@@ -65,7 +68,9 @@ class GCP:
logging.error(
"Failed to suspend node instance %s. Encountered following " "exception: %s." % (instance_id, e)
)
sys.exit(1)
# removed_exit
# sys.exit(1)
raise RuntimeError()
# Terminate the node instance
def terminate_instances(self, zone, instance_id):
@@ -76,7 +81,9 @@ class GCP:
logging.error(
"Failed to start node instance %s. Encountered following " "exception: %s." % (instance_id, e)
)
sys.exit(1)
# removed_exit
# sys.exit(1)
raise RuntimeError()
# Reboot the node instance
def reboot_instances(self, zone, instance_id):
@@ -87,7 +94,9 @@ class GCP:
logging.error(
"Failed to start node instance %s. Encountered following " "exception: %s." % (instance_id, e)
)
sys.exit(1)
# removed_exit
# sys.exit(1)
raise RuntimeError()
# Get instance status
def get_instance_status(self, zone, instance_id, expected_status, timeout):
@@ -133,9 +142,9 @@ class GCP:
return True
# krkn_lib_kubernetes
# krkn_lib
class gcp_node_scenarios(abstract_node_scenarios):
def __init__(self, kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
def __init__(self, kubecli: KrknKubernetes):
super().__init__(kubecli)
self.gcp = GCP()
@@ -156,7 +165,9 @@ class gcp_node_scenarios(abstract_node_scenarios):
"Failed to start node instance. Encountered following " "exception: %s. Test Failed" % (e)
)
logging.error("node_start_scenario injection failed!")
sys.exit(1)
# removed_exit
# sys.exit(1)
raise RuntimeError()
# Node scenario to stop the node
def node_stop_scenario(self, instance_kill_count, node, timeout):
@@ -173,7 +184,9 @@ class gcp_node_scenarios(abstract_node_scenarios):
except Exception as e:
logging.error("Failed to stop node instance. Encountered following exception: %s. " "Test Failed" % (e))
logging.error("node_stop_scenario injection failed!")
sys.exit(1)
# removed_exit
# sys.exit(1)
raise RuntimeError()
# Node scenario to terminate the node
def node_termination_scenario(self, instance_kill_count, node, timeout):
@@ -197,7 +210,9 @@ class gcp_node_scenarios(abstract_node_scenarios):
"Failed to terminate node instance. Encountered following exception:" " %s. Test Failed" % e
)
logging.error("node_termination_scenario injection failed!")
sys.exit(1)
# removed_exit
# sys.exit(1)
raise RuntimeError()
# Node scenario to reboot the node
def node_reboot_scenario(self, instance_kill_count, node, timeout):
@@ -215,4 +230,6 @@ class gcp_node_scenarios(abstract_node_scenarios):
"Failed to reboot node instance. Encountered following exception:" " %s. Test Failed" % (e)
)
logging.error("node_reboot_scenario injection failed!")
sys.exit(1)
# removed_exit
# sys.exit(1)
raise RuntimeError()

View File

@@ -1,15 +1,14 @@
import logging
import krkn_lib_kubernetes
from kraken.node_actions.abstract_node_scenarios import abstract_node_scenarios
from krkn_lib.k8s import KrknKubernetes
class GENERAL:
def __init__(self):
pass
# krkn_lib_kubernetes
# krkn_lib
class general_node_scenarios(abstract_node_scenarios):
def __init__(self, kubecli: krkn_lib_kubernetes.KrknLibKubernetes ):
def __init__(self, kubecli: KrknKubernetes):
super().__init__(kubecli)
self.general = GENERAL()

View File

@@ -1,11 +1,10 @@
import sys
import time
import logging
import krkn_lib_kubernetes
import kraken.invoke.command as runcommand
import kraken.node_actions.common_node_functions as nodeaction
from kraken.node_actions.abstract_node_scenarios import abstract_node_scenarios
from krkn_lib.k8s import KrknKubernetes
class OPENSTACKCLOUD:
def __init__(self):
@@ -24,7 +23,9 @@ class OPENSTACKCLOUD:
logging.info("Instance: " + str(node) + " started")
except Exception as e:
logging.error("Failed to start node instance %s. Encountered following " "exception: %s." % (node, e))
sys.exit(1)
# removed_exit
# sys.exit(1)
raise RuntimeError()
# Stop the node instance
def stop_instances(self, node):
@@ -33,7 +34,9 @@ class OPENSTACKCLOUD:
logging.info("Instance: " + str(node) + " stopped")
except Exception as e:
logging.error("Failed to stop node instance %s. Encountered following " "exception: %s." % (node, e))
sys.exit(1)
# removed_exit
# sys.exit(1)
raise RuntimeError()
# Reboot the node instance
def reboot_instances(self, node):
@@ -42,7 +45,9 @@ class OPENSTACKCLOUD:
logging.info("Instance: " + str(node) + " rebooted")
except Exception as e:
logging.error("Failed to reboot node instance %s. Encountered following " "exception: %s." % (node, e))
sys.exit(1)
# removed_exit
# sys.exit(1)
raise RuntimeError()
# Wait until the node instance is running
def wait_until_running(self, node, timeout):
@@ -87,9 +92,9 @@ class OPENSTACKCLOUD:
return node_name
counter += 1
# krkn_lib_kubernetes
# krkn_lib
class openstack_node_scenarios(abstract_node_scenarios):
def __init__(self, kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
def __init__(self, kubecli: KrknKubernetes):
self.openstackcloud = OPENSTACKCLOUD()
# Node scenario to start the node
@@ -109,7 +114,9 @@ class openstack_node_scenarios(abstract_node_scenarios):
"Failed to start node instance. Encountered following " "exception: %s. Test Failed" % (e)
)
logging.error("node_start_scenario injection failed!")
sys.exit(1)
# removed_exit
# sys.exit(1)
raise RuntimeError()
# Node scenario to stop the node
def node_stop_scenario(self, instance_kill_count, node, timeout):
@@ -125,7 +132,9 @@ class openstack_node_scenarios(abstract_node_scenarios):
except Exception as e:
logging.error("Failed to stop node instance. Encountered following exception: %s. " "Test Failed" % (e))
logging.error("node_stop_scenario injection failed!")
sys.exit(1)
# removed_exit
# sys.exit(1)
raise RuntimeError()
# Node scenario to reboot the node
def node_reboot_scenario(self, instance_kill_count, node, timeout):
@@ -144,7 +153,9 @@ class openstack_node_scenarios(abstract_node_scenarios):
"Failed to reboot node instance. Encountered following exception:" " %s. Test Failed" % (e)
)
logging.error("node_reboot_scenario injection failed!")
sys.exit(1)
# removed_exit
# sys.exit(1)
raise RuntimeError()
# Node scenario to start the node
def helper_node_start_scenario(self, instance_kill_count, node_ip, timeout):
@@ -162,7 +173,9 @@ class openstack_node_scenarios(abstract_node_scenarios):
"Failed to start node instance. Encountered following " "exception: %s. Test Failed" % (e)
)
logging.error("helper_node_start_scenario injection failed!")
sys.exit(1)
# removed_exit
# sys.exit(1)
raise RuntimeError()
# Node scenario to stop the node
def helper_node_stop_scenario(self, instance_kill_count, node_ip, timeout):
@@ -177,7 +190,9 @@ class openstack_node_scenarios(abstract_node_scenarios):
except Exception as e:
logging.error("Failed to stop node instance. Encountered following exception: %s. " "Test Failed" % (e))
logging.error("helper_node_stop_scenario injection failed!")
sys.exit(1)
# removed_exit
# sys.exit(1)
raise RuntimeError()
def helper_node_service_status(self, node_ip, service, ssh_private_key, timeout):
try:
@@ -188,4 +203,6 @@ class openstack_node_scenarios(abstract_node_scenarios):
except Exception as e:
logging.error("Failed to check service status. Encountered following exception:" " %s. Test Failed" % (e))
logging.error("helper_node_service_status injection failed!")
sys.exit(1)
# removed_exit
# sys.exit(1)
raise RuntimeError()

View File

@@ -2,7 +2,6 @@ import yaml
import logging
import sys
import time
import krkn_lib_kubernetes
from kraken.node_actions.aws_node_scenarios import aws_node_scenarios
from kraken.node_actions.general_cloud_node_scenarios import general_node_scenarios
from kraken.node_actions.az_node_scenarios import azure_node_scenarios
@@ -13,14 +12,15 @@ from kraken.node_actions.bm_node_scenarios import bm_node_scenarios
from kraken.node_actions.docker_node_scenarios import docker_node_scenarios
import kraken.node_actions.common_node_functions as common_node_functions
import kraken.cerberus.setup as cerberus
from krkn_lib.k8s import KrknKubernetes
from krkn_lib.telemetry.k8s import KrknTelemetryKubernetes
from krkn_lib.models.telemetry import ScenarioTelemetry
node_general = False
# Get the node scenarios object of specfied cloud type
# krkn_lib_kubernetes
def get_node_scenario_object(node_scenario, kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
# krkn_lib
def get_node_scenario_object(node_scenario, kubecli: KrknKubernetes):
if "cloud_type" not in node_scenario.keys() or node_scenario["cloud_type"] == "generic":
global node_general
node_general = True
@@ -52,9 +52,15 @@ def get_node_scenario_object(node_scenario, kubecli: krkn_lib_kubernetes.KrknLib
# Run defined scenarios
# krkn_lib_kubernetes
def run(scenarios_list, config, wait_duration, kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
# krkn_lib
def run(scenarios_list, config, wait_duration, kubecli: KrknKubernetes, telemetry: KrknTelemetryKubernetes) -> (list[str], list[ScenarioTelemetry]):
scenario_telemetries: list[ScenarioTelemetry] = []
failed_scenarios = []
for node_scenario_config in scenarios_list:
scenario_telemetry = ScenarioTelemetry()
scenario_telemetry.scenario = node_scenario_config
scenario_telemetry.startTimeStamp = time.time()
telemetry.set_parameters_base64(scenario_telemetry, node_scenario_config)
with open(node_scenario_config, "r") as f:
node_scenario_config = yaml.full_load(f)
for node_scenario in node_scenario_config["node_scenarios"]:
@@ -62,25 +68,41 @@ def run(scenarios_list, config, wait_duration, kubecli: krkn_lib_kubernetes.Krkn
if node_scenario["actions"]:
for action in node_scenario["actions"]:
start_time = int(time.time())
inject_node_scenario(action, node_scenario, node_scenario_object, kubecli)
logging.info("Waiting for the specified duration: %s" % (wait_duration))
time.sleep(wait_duration)
end_time = int(time.time())
cerberus.get_status(config, start_time, end_time)
logging.info("")
try:
inject_node_scenario(action, node_scenario, node_scenario_object, kubecli)
logging.info("Waiting for the specified duration: %s" % (wait_duration))
time.sleep(wait_duration)
end_time = int(time.time())
cerberus.get_status(config, start_time, end_time)
logging.info("")
except (RuntimeError, Exception) as e:
scenario_telemetry.exitStatus = 1
failed_scenarios.append(node_scenario_config)
log_exception(node_scenario_config)
else:
scenario_telemetry.exitStatus = 0
scenario_telemetry.endTimeStamp = time.time()
scenario_telemetries.append(scenario_telemetry)
return failed_scenarios, scenario_telemetries
# Inject the specified node scenario
def inject_node_scenario(action, node_scenario, node_scenario_object, kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
def inject_node_scenario(action, node_scenario, node_scenario_object, kubecli: KrknKubernetes):
generic_cloud_scenarios = ("stop_kubelet_scenario", "node_crash_scenario")
# Get the node scenario configurations
run_kill_count = node_scenario.get("runs", 1)
instance_kill_count = node_scenario.get("instance_count", 1)
node_name = node_scenario.get("node_name", "")
label_selector = node_scenario.get("label_selector", "")
timeout = node_scenario.get("timeout", 120)
service = node_scenario.get("service", "")
ssh_private_key = node_scenario.get("ssh_private_key", "~/.ssh/id_rsa")
run_kill_count = get_yaml_item_value(node_scenario, "runs", 1)
instance_kill_count = get_yaml_item_value(
node_scenario, "instance_count", 1
)
node_name = get_yaml_item_value(node_scenario, "node_name", "")
label_selector = get_yaml_item_value(node_scenario, "label_selector", "")
timeout = get_yaml_item_value(node_scenario, "timeout", 120)
service = get_yaml_item_value(node_scenario, "service", "")
ssh_private_key = get_yaml_item_value(
node_scenario, "ssh_private_key", "~/.ssh/id_rsa"
)
# Get the node to apply the scenario
if node_name:
node_name_list = node_name.split(",")

View File

@@ -12,6 +12,10 @@ import kraken.plugins.node_scenarios.ibmcloud_plugin as ibmcloud_plugin
from kraken.plugins.run_python_plugin import run_python_file
from kraken.plugins.network.ingress_shaping import network_chaos
from kraken.plugins.pod_network_outage.pod_network_outage_plugin import pod_outage
from kraken.plugins.pod_network_outage.pod_network_outage_plugin import pod_egress_shaping
from krkn_lib.telemetry.k8s import KrknTelemetryKubernetes
from krkn_lib.models.telemetry import ScenarioTelemetry
from krkn_lib.utils.functions import log_exception
@dataclasses.dataclass
@@ -213,21 +217,36 @@ PLUGINS = Plugins(
[
"error"
]
),
PluginStep(
pod_egress_shaping,
[
"error"
]
)
]
)
def run(scenarios: List[str], kubeconfig_path: str, kraken_config: str, failed_post_scenarios: List[str], wait_duration: int) -> List[str]:
def run(scenarios: List[str], kubeconfig_path: str, kraken_config: str, failed_post_scenarios: List[str], wait_duration: int, telemetry: KrknTelemetryKubernetes) -> (List[str], list[ScenarioTelemetry]):
scenario_telemetries: list[ScenarioTelemetry] = []
for scenario in scenarios:
logging.info('scenario '+ str(scenario))
scenario_telemetry = ScenarioTelemetry()
scenario_telemetry.scenario = scenario
scenario_telemetry.startTimeStamp = time.time()
telemetry.set_parameters_base64(scenario_telemetry, scenario)
logging.info('scenario ' + str(scenario))
try:
PLUGINS.run(scenario, kubeconfig_path, kraken_config)
except Exception as e:
scenario_telemetry.exitStatus = 1
failed_post_scenarios.append(scenario)
logging.error("Error while running {}: {}".format(scenario, e))
return failed_post_scenarios
logging.info("Waiting for the specified duration: %s" % (wait_duration))
time.sleep(wait_duration)
log_exception(scenario)
else:
scenario_telemetry.exitStatus = 0
logging.info("Waiting for the specified duration: %s" % (wait_duration))
time.sleep(wait_duration)
scenario_telemetries.append(scenario_telemetry)
scenario_telemetry.endTimeStamp = time.time()
return failed_post_scenarios
return failed_post_scenarios, scenario_telemetries

View File

@@ -1,15 +1,16 @@
import logging
from arcaflow_plugin_sdk import serialization
import arcaflow_plugin_kill_pod
import kraken.cerberus.setup as cerberus
import kraken.post_actions.actions as post_actions
import krkn_lib_kubernetes
import time
import yaml
import sys
import random
import arcaflow_plugin_kill_pod
import kraken.cerberus.setup as cerberus
import kraken.post_actions.actions as post_actions
from krkn_lib.k8s import KrknKubernetes
from krkn_lib.telemetry.k8s import KrknTelemetryKubernetes
from krkn_lib.models.telemetry import ScenarioTelemetry
from arcaflow_plugin_sdk import serialization
from krkn_lib.utils.functions import get_yaml_item_value, log_exception
# Run pod based scenarios
@@ -66,9 +67,24 @@ def run(kubeconfig_path, scenarios_list, config, failed_post_scenarios, wait_dur
cerberus.publish_kraken_status(config, failed_post_scenarios, start_time, end_time)
return failed_post_scenarios
# krkn_lib_kubernetes
def container_run(kubeconfig_path, scenarios_list, config, failed_post_scenarios, wait_duration, kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
# krkn_lib
def container_run(kubeconfig_path,
scenarios_list,
config,
failed_post_scenarios,
wait_duration,
kubecli: KrknKubernetes,
telemetry: KrknTelemetryKubernetes) -> (list[str], list[ScenarioTelemetry]):
failed_scenarios = []
scenario_telemetries: list[ScenarioTelemetry] = []
for container_scenario_config in scenarios_list:
scenario_telemetry = ScenarioTelemetry()
scenario_telemetry.scenario = container_scenario_config[0]
scenario_telemetry.startTimeStamp = time.time()
telemetry.set_parameters_base64(scenario_telemetry, container_scenario_config[0])
if len(container_scenario_config) > 1:
pre_action_output = post_actions.run(kubeconfig_path, container_scenario_config[1])
else:
@@ -78,43 +94,63 @@ def container_run(kubeconfig_path, scenarios_list, config, failed_post_scenarios
for cont_scenario in cont_scenario_config["scenarios"]:
# capture start time
start_time = int(time.time())
killed_containers = container_killing_in_pod(cont_scenario, kubecli)
if len(container_scenario_config) > 1:
try:
try:
killed_containers = container_killing_in_pod(cont_scenario, kubecli)
if len(container_scenario_config) > 1:
failed_post_scenarios = post_actions.check_recovery(
kubeconfig_path, container_scenario_config, failed_post_scenarios, pre_action_output
kubeconfig_path,
container_scenario_config,
failed_post_scenarios,
pre_action_output
)
except Exception as e:
logging.error("Failed to run post action checks: %s" % e)
sys.exit(1)
else:
failed_post_scenarios = check_failed_containers(
killed_containers, cont_scenario.get("retry_wait", 120), kubecli
)
logging.info("Waiting for the specified duration: %s" % (wait_duration))
time.sleep(wait_duration)
# capture end time
end_time = int(time.time())
# publish cerberus status
cerberus.publish_kraken_status(config, failed_post_scenarios, start_time, end_time)
except (RuntimeError, Exception):
failed_scenarios.append(container_scenario_config[0])
log_exception(container_scenario_config[0])
scenario_telemetry.exitStatus = 1
# removed_exit
# sys.exit(1)
else:
failed_post_scenarios = check_failed_containers(
killed_containers, cont_scenario.get("retry_wait", 120), kubecli
)
scenario_telemetry.exitStatus = 0
scenario_telemetry.endTimeStamp = time.time()
scenario_telemetries.append(scenario_telemetry)
logging.info("Waiting for the specified duration: %s" % (wait_duration))
time.sleep(wait_duration)
# capture end time
end_time = int(time.time())
# publish cerberus status
cerberus.publish_kraken_status(config, failed_post_scenarios, start_time, end_time)
logging.info("")
return failed_scenarios, scenario_telemetries
def container_killing_in_pod(cont_scenario, kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
scenario_name = cont_scenario.get("name", "")
namespace = cont_scenario.get("namespace", "*")
label_selector = cont_scenario.get("label_selector", None)
pod_names = cont_scenario.get("pod_names", [])
container_name = cont_scenario.get("container_name", "")
kill_action = cont_scenario.get("action", "kill 1")
kill_count = cont_scenario.get("count", 1)
def container_killing_in_pod(cont_scenario, kubecli: KrknKubernetes):
scenario_name = get_yaml_item_value(cont_scenario, "name", "")
namespace = get_yaml_item_value(cont_scenario, "namespace", "*")
label_selector = get_yaml_item_value(cont_scenario, "label_selector", None)
pod_names = get_yaml_item_value(cont_scenario, "pod_names", [])
container_name = get_yaml_item_value(cont_scenario, "container_name", "")
kill_action = get_yaml_item_value(cont_scenario, "action", 1)
kill_count = get_yaml_item_value(cont_scenario, "count", 1)
if not isinstance(kill_action, int):
logging.error("Please make sure the action parameter defined in the "
"config is an integer")
raise RuntimeError()
if (kill_action < 1) or (kill_action > 15):
logging.error("Only 1-15 kill signals are supported.")
raise RuntimeError()
kill_action = "kill " + str(kill_action)
if type(pod_names) != list:
logging.error("Please make sure your pod_names are in a list format")
sys.exit(1)
# removed_exit
# sys.exit(1)
raise RuntimeError()
if len(pod_names) == 0:
if namespace == "*":
# returns double array of pod name and namespace
@@ -126,7 +162,9 @@ def container_killing_in_pod(cont_scenario, kubecli: krkn_lib_kubernetes.KrknLib
if namespace == "*":
logging.error("You must specify the namespace to kill a container in a specific pod")
logging.error("Scenario " + scenario_name + " failed")
sys.exit(1)
# removed_exit
# sys.exit(1)
raise RuntimeError()
pods = pod_names
# get container and pod name
container_pod_list = []
@@ -147,7 +185,9 @@ def container_killing_in_pod(cont_scenario, kubecli: krkn_lib_kubernetes.KrknLib
if len(container_pod_list) == 0:
logging.error("Trying to kill more containers than were found, try lowering kill count")
logging.error("Scenario " + scenario_name + " failed")
sys.exit(1)
# removed_exit
# sys.exit(1)
raise RuntimeError()
selected_container_pod = container_pod_list[random.randint(0, len(container_pod_list) - 1)]
for c_name in selected_container_pod[2]:
if container_name != "":
@@ -165,7 +205,7 @@ def container_killing_in_pod(cont_scenario, kubecli: krkn_lib_kubernetes.KrknLib
return killed_container_list
def retry_container_killing(kill_action, podname, namespace, container_name, kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
def retry_container_killing(kill_action, podname, namespace, container_name, kubecli: KrknKubernetes):
i = 0
while i < 5:
logging.info("Killing container %s in pod %s (ns %s)" % (str(container_name), str(podname), str(namespace)))
@@ -178,10 +218,11 @@ def retry_container_killing(kill_action, podname, namespace, container_name, kub
time.sleep(2)
continue
else:
logging.warning(response)
continue
def check_failed_containers(killed_container_list, wait_time, kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
def check_failed_containers(killed_container_list, wait_time, kubecli: KrknKubernetes):
container_ready = []
timer = 0

View File

@@ -1,157 +1,247 @@
import logging
import random
import re
import sys
import time
import krkn_lib_kubernetes
import yaml
from ..cerberus import setup as cerberus
from krkn_lib.k8s import KrknKubernetes
from krkn_lib.telemetry.k8s import KrknTelemetryKubernetes
from krkn_lib.models.telemetry import ScenarioTelemetry
from krkn_lib.utils.functions import get_yaml_item_value, log_exception
# krkn_lib_kubernetes
def run(scenarios_list, config, kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
# krkn_lib
def run(scenarios_list, config, kubecli: KrknKubernetes, telemetry: KrknTelemetryKubernetes) -> (list[str], list[ScenarioTelemetry]):
"""
Reads the scenario config and creates a temp file to fill up the PVC
"""
failed_post_scenarios = ""
scenario_telemetries: list[ScenarioTelemetry] = []
failed_scenarios = []
for app_config in scenarios_list:
if len(app_config) > 1:
with open(app_config, "r") as f:
config_yaml = yaml.full_load(f)
scenario_config = config_yaml["pvc_scenario"]
pvc_name = scenario_config.get("pvc_name", "")
pod_name = scenario_config.get("pod_name", "")
namespace = scenario_config.get("namespace", "")
target_fill_percentage = scenario_config.get(
"fill_percentage", "50"
)
duration = scenario_config.get("duration", 60)
scenario_telemetry = ScenarioTelemetry()
scenario_telemetry.scenario = app_config
scenario_telemetry.startTimeStamp = time.time()
telemetry.set_parameters_base64(scenario_telemetry, app_config)
try:
if len(app_config) > 1:
with open(app_config, "r") as f:
config_yaml = yaml.full_load(f)
scenario_config = config_yaml["pvc_scenario"]
pvc_name = get_yaml_item_value(
scenario_config, "pvc_name", ""
)
pod_name = get_yaml_item_value(
scenario_config, "pod_name", ""
)
namespace = get_yaml_item_value(
scenario_config, "namespace", ""
)
target_fill_percentage = get_yaml_item_value(
scenario_config, "fill_percentage", "50"
)
duration = get_yaml_item_value(
scenario_config, "duration", 60
)
logging.info(
"Input params:\n"
"pvc_name: '%s'\n"
"pod_name: '%s'\n"
"namespace: '%s'\n"
"target_fill_percentage: '%s%%'\nduration: '%ss'"
% (
str(pvc_name),
str(pod_name),
str(namespace),
str(target_fill_percentage),
str(duration)
)
)
# Check input params
if namespace is None:
logging.error(
"You must specify the namespace where the PVC is"
)
sys.exit(1)
if pvc_name is None and pod_name is None:
logging.error(
"You must specify the pvc_name or the pod_name"
)
sys.exit(1)
if pvc_name and pod_name:
logging.info(
"pod_name will be ignored, pod_name used will be "
"a retrieved from the pod used in the pvc_name"
"Input params:\n"
"pvc_name: '%s'\n"
"pod_name: '%s'\n"
"namespace: '%s'\n"
"target_fill_percentage: '%s%%'\nduration: '%ss'"
% (
str(pvc_name),
str(pod_name),
str(namespace),
str(target_fill_percentage),
str(duration)
)
)
# Get pod name
if pvc_name:
if pod_name:
logging.info(
"pod_name '%s' will be overridden with one of "
"the pods mounted in the PVC" % (str(pod_name))
)
pvc = kubecli.get_pvc_info(pvc_name, namespace)
try:
# random generator not used for
# security/cryptographic purposes.
pod_name = random.choice(pvc.podNames) # nosec
logging.info("Pod name: %s" % pod_name)
except Exception:
# Check input params
if namespace is None:
logging.error(
"Pod associated with %s PVC, on namespace %s, "
"not found" % (str(pvc_name), str(namespace))
"You must specify the namespace where the PVC is"
)
sys.exit(1)
# Get volume name
pod = kubecli.get_pod_info(name=pod_name, namespace=namespace)
if pod is None:
logging.error(
"Exiting as pod '%s' doesn't exist "
"in namespace '%s'" % (
str(pod_name),
str(namespace)
#sys.exit(1)
raise RuntimeError()
if pvc_name is None and pod_name is None:
logging.error(
"You must specify the pvc_name or the pod_name"
)
# sys.exit(1)
raise RuntimeError()
if pvc_name and pod_name:
logging.info(
"pod_name will be ignored, pod_name used will be "
"a retrieved from the pod used in the pvc_name"
)
)
sys.exit(1)
for volume in pod.volumes:
if volume.pvcName is not None:
volume_name = volume.name
pvc_name = volume.pvcName
# Get pod name
if pvc_name:
if pod_name:
logging.info(
"pod_name '%s' will be overridden with one of "
"the pods mounted in the PVC" % (str(pod_name))
)
pvc = kubecli.get_pvc_info(pvc_name, namespace)
break
if 'pvc' not in locals():
logging.error(
"Pod '%s' in namespace '%s' does not use a pvc" % (
try:
# random generator not used for
# security/cryptographic purposes.
pod_name = random.choice(pvc.podNames) # nosec
logging.info("Pod name: %s" % pod_name)
except Exception:
logging.error(
"Pod associated with %s PVC, on namespace %s, "
"not found" % (str(pvc_name), str(namespace))
)
# sys.exit(1)
raise RuntimeError()
# Get volume name
pod = kubecli.get_pod_info(name=pod_name, namespace=namespace)
if pod is None:
logging.error(
"Exiting as pod '%s' doesn't exist "
"in namespace '%s'" % (
str(pod_name),
str(namespace)
)
)
# sys.exit(1)
raise RuntimeError()
for volume in pod.volumes:
if volume.pvcName is not None:
volume_name = volume.name
pvc_name = volume.pvcName
pvc = kubecli.get_pvc_info(pvc_name, namespace)
break
if 'pvc' not in locals():
logging.error(
"Pod '%s' in namespace '%s' does not use a pvc" % (
str(pod_name),
str(namespace)
)
)
# sys.exit(1)
raise RuntimeError()
logging.info("Volume name: %s" % volume_name)
logging.info("PVC name: %s" % pvc_name)
# Get container name and mount path
for container in pod.containers:
for vol in container.volumeMounts:
if vol.name == volume_name:
mount_path = vol.mountPath
container_name = container.name
break
logging.info("Container path: %s" % container_name)
logging.info("Mount path: %s" % mount_path)
# Get PVC capacity and used bytes
command = "df %s -B 1024 | sed 1d" % (str(mount_path))
command_output = (
kubecli.exec_cmd_in_pod(
command,
pod_name,
namespace,
container_name
)
).split()
pvc_used_kb = int(command_output[2])
pvc_capacity_kb = pvc_used_kb + int(command_output[3])
logging.info("PVC used: %s KB" % pvc_used_kb)
logging.info("PVC capacity: %s KB" % pvc_capacity_kb)
# Check valid fill percentage
current_fill_percentage = pvc_used_kb / pvc_capacity_kb
if not (
current_fill_percentage * 100
< float(target_fill_percentage)
<= 99
):
logging.error(
"Target fill percentage (%.2f%%) is lower than "
"current fill percentage (%.2f%%) "
"or higher than 99%%" % (
target_fill_percentage,
current_fill_percentage * 100
)
)
# sys.exit(1)
raise RuntimeError()
# Calculate file size
file_size_kb = int(
(
float(
target_fill_percentage / 100
) * float(pvc_capacity_kb)
) - float(pvc_used_kb)
)
logging.debug("File size: %s KB" % file_size_kb)
file_name = "kraken.tmp"
logging.info(
"Creating %s file, %s KB size, in pod %s at %s (ns %s)"
% (
str(file_name),
str(file_size_kb),
str(pod_name),
str(mount_path),
str(namespace)
)
)
sys.exit(1)
logging.info("Volume name: %s" % volume_name)
logging.info("PVC name: %s" % pvc_name)
# Get container name and mount path
for container in pod.containers:
for vol in container.volumeMounts:
if vol.name == volume_name:
mount_path = vol.mountPath
container_name = container.name
break
logging.info("Container path: %s" % container_name)
logging.info("Mount path: %s" % mount_path)
# Get PVC capacity and used bytes
command = "df %s -B 1024 | sed 1d" % (str(mount_path))
command_output = (
start_time = int(time.time())
# Create temp file in the PVC
full_path = "%s/%s" % (str(mount_path), str(file_name))
command = "fallocate -l $((%s*1024)) %s" % (
str(file_size_kb),
str(full_path)
)
logging.debug(
"Create temp file in the PVC command:\n %s" % command
)
kubecli.exec_cmd_in_pod(
command,
pod_name,
namespace,
container_name,
"sh"
)
).split()
pvc_used_kb = int(command_output[2])
pvc_capacity_kb = pvc_used_kb + int(command_output[3])
logging.info("PVC used: %s KB" % pvc_used_kb)
logging.info("PVC capacity: %s KB" % pvc_capacity_kb)
# Check valid fill percentage
current_fill_percentage = pvc_used_kb / pvc_capacity_kb
if not (
current_fill_percentage * 100
< float(target_fill_percentage)
<= 99
):
logging.error(
"Target fill percentage (%.2f%%) is lower than "
"current fill percentage (%.2f%%) "
"or higher than 99%%" % (
target_fill_percentage,
current_fill_percentage * 100
)
# Check if file is created
command = "ls -lh %s" % (str(mount_path))
logging.debug("Check file is created command:\n %s" % command)
response = kubecli.exec_cmd_in_pod(
command, pod_name, namespace, container_name
)
sys.exit(1)
logging.info("\n" + str(response))
if str(file_name).lower() in str(response).lower():
logging.info(
"%s file successfully created" % (str(full_path))
)
else:
logging.error(
"Failed to create tmp file with %s size" % (
str(file_size_kb)
)
)
remove_temp_file(
file_name,
full_path,
pod_name,
namespace,
container_name,
mount_path,
file_size_kb,
kubecli
)
# sys.exit(1)
raise RuntimeError()
# Calculate file size
file_size_kb = int(
@@ -186,26 +276,25 @@ def run(scenarios_list, config, kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
"Create temp file in the PVC command:\n %s" % command
)
kubecli.exec_cmd_in_pod(
command, pod_name, namespace, container_name, "sh"
command, pod_name, namespace, container_name
)
# Check if file is created
command = "ls -lh %s" % (str(mount_path))
logging.debug("Check file is created command:\n %s" % command)
response = kubecli.exec_cmd_in_pod(
command, pod_name, namespace, container_name, "sh"
command, pod_name, namespace, container_name
)
logging.info("\n" + str(response))
if str(file_name).lower() in str(response).lower():
logging.info(
"%s file successfully created" % (str(full_path))
)
else:
logging.error(
"Failed to create tmp file with %s size" % (
str(file_size_kb)
"Waiting for the specified duration in the config: %ss" % (
duration
)
)
time.sleep(duration)
logging.info("Finish waiting")
remove_temp_file(
file_name,
full_path,
@@ -216,38 +305,28 @@ def run(scenarios_list, config, kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
file_size_kb,
kubecli
)
sys.exit(1)
# Wait for the specified duration
logging.info(
"Waiting for the specified duration in the config: %ss" % (
duration
end_time = int(time.time())
cerberus.publish_kraken_status(
config,
failed_post_scenarios,
start_time,
end_time
)
)
time.sleep(duration)
logging.info("Finish waiting")
except (RuntimeError, Exception):
scenario_telemetry.exitStatus = 1
failed_scenarios.append(app_config)
log_exception(app_config)
else:
scenario_telemetry.exitStatus = 0
scenario_telemetries.append(scenario_telemetry)
remove_temp_file(
file_name,
full_path,
pod_name,
namespace,
container_name,
mount_path,
file_size_kb,
kubecli
)
end_time = int(time.time())
cerberus.publish_kraken_status(
config,
failed_post_scenarios,
start_time,
end_time
)
return failed_scenarios, scenario_telemetries
# krkn_lib_kubernetes
# krkn_lib
def remove_temp_file(
file_name,
full_path,
@@ -256,19 +335,18 @@ def remove_temp_file(
container_name,
mount_path,
file_size_kb,
kubecli: krkn_lib_kubernetes.KrknLibKubernetes
kubecli: KrknKubernetes
):
command = "rm -f %s" % (str(full_path))
logging.debug("Remove temp file from the PVC command:\n %s" % command)
kubecli.exec_cmd_in_pod(command, pod_name, namespace, container_name, "sh")
kubecli.exec_cmd_in_pod(command, pod_name, namespace, container_name)
command = "ls -lh %s" % (str(mount_path))
logging.debug("Check temp file is removed command:\n %s" % command)
response = kubecli.exec_cmd_in_pod(
command,
pod_name,
namespace,
container_name,
"sh"
container_name
)
logging.info("\n" + str(response))
if not (str(file_name).lower() in str(response).lower()):
@@ -277,7 +355,7 @@ def remove_temp_file(
logging.error(
"Failed to delete tmp file with %s size" % (str(file_size_kb))
)
sys.exit(1)
raise RuntimeError()
def toKbytes(value):
@@ -286,7 +364,7 @@ def toKbytes(value):
"PVC capacity %s does not match expression "
"regexp '^[0-9]+[K|M|G|T]i$'"
)
sys.exit(1)
raise RuntimeError()
unit = {"K": 0, "M": 1, "G": 2, "T": 3}
base = 1024 if ("i" in value) else 1000
exp = unit[value[-2:-1]]

View File

@@ -0,0 +1,325 @@
import time
import random
import logging
import kraken.cerberus.setup as cerberus
import kraken.post_actions.actions as post_actions
import yaml
from krkn_lib.k8s import KrknKubernetes
from krkn_lib.telemetry.k8s import KrknTelemetryKubernetes
from krkn_lib.models.telemetry import ScenarioTelemetry
from krkn_lib.utils.functions import get_yaml_item_value, log_exception
def delete_objects(kubecli, namespace):
services = delete_all_services_namespace(kubecli, namespace)
daemonsets = delete_all_daemonset_namespace(kubecli, namespace)
statefulsets = delete_all_statefulsets_namespace(kubecli, namespace)
replicasets = delete_all_replicaset_namespace(kubecli, namespace)
deployments = delete_all_deployment_namespace(kubecli, namespace)
objects = { "daemonsets": daemonsets,
"deployments": deployments,
"replicasets": replicasets,
"statefulsets": statefulsets,
"services": services
}
return objects
def get_list_running_pods(kubecli: KrknKubernetes, namespace: str):
running_pods = []
pods = kubecli.list_pods(namespace)
for pod in pods:
pod_status = kubecli.get_pod_info(pod, namespace)
if pod_status and pod_status.status == "Running":
running_pods.append(pod)
logging.info('all running pods ' + str(running_pods))
return running_pods
def delete_all_deployment_namespace(kubecli: KrknKubernetes, namespace: str):
"""
Delete all the deployments in the specified namespace
:param kubecli: krkn kubernetes python package
:param namespace: namespace
"""
try:
deployments = kubecli.get_deployment_ns(namespace)
for deployment in deployments:
logging.info("Deleting deployment" + deployment)
kubecli.delete_deployment(deployment, namespace)
except Exception as e:
logging.error(
"Exception when calling delete_all_deployment_namespace: %s\n",
str(e),
)
raise e
return deployments
def delete_all_daemonset_namespace(kubecli: KrknKubernetes, namespace: str):
"""
Delete all the daemonset in the specified namespace
:param kubecli: krkn kubernetes python package
:param namespace: namespace
"""
try:
daemonsets = kubecli.get_daemonset(namespace)
for daemonset in daemonsets:
logging.info("Deleting daemonset" + daemonset)
kubecli.delete_daemonset(daemonset, namespace)
except Exception as e:
logging.error(
"Exception when calling delete_all_daemonset_namespace: %s\n",
str(e),
)
raise e
return daemonsets
def delete_all_statefulsets_namespace(kubecli: KrknKubernetes, namespace: str):
"""
Delete all the statefulsets in the specified namespace
:param kubecli: krkn kubernetes python package
:param namespace: namespace
"""
try:
statefulsets = kubecli.get_all_statefulset(namespace)
for statefulset in statefulsets:
logging.info("Deleting statefulsets" + statefulsets)
kubecli.delete_statefulset(statefulset, namespace)
except Exception as e:
logging.error(
"Exception when calling delete_all_statefulsets_namespace: %s\n",
str(e),
)
raise e
return statefulsets
def delete_all_replicaset_namespace(kubecli: KrknKubernetes, namespace: str):
"""
Delete all the replicasets in the specified namespace
:param kubecli: krkn kubernetes python package
:param namespace: namespace
"""
try:
replicasets = kubecli.get_all_replicasets(namespace)
for replicaset in replicasets:
logging.info("Deleting replicaset" + replicaset)
kubecli.delete_replicaset(replicaset, namespace)
except Exception as e:
logging.error(
"Exception when calling delete_all_replicaset_namespace: %s\n",
str(e),
)
raise e
return replicasets
def delete_all_services_namespace(kubecli: KrknKubernetes, namespace: str):
"""
Delete all the services in the specified namespace
:param kubecli: krkn kubernetes python package
:param namespace: namespace
"""
try:
services = kubecli.get_all_services(namespace)
for service in services:
logging.info("Deleting services" + service)
kubecli.delete_services(service, namespace)
except Exception as e:
logging.error(
"Exception when calling delete_all_services_namespace: %s\n",
str(e),
)
raise e
return services
# krkn_lib
def run(
scenarios_list,
config,
wait_duration,
failed_post_scenarios,
kubeconfig_path,
kubecli: KrknKubernetes,
telemetry: KrknTelemetryKubernetes
) -> (list[str], list[ScenarioTelemetry]):
scenario_telemetries: list[ScenarioTelemetry] = []
failed_scenarios = []
for scenario_config in scenarios_list:
scenario_telemetry = ScenarioTelemetry()
scenario_telemetry.scenario = scenario_config[0]
scenario_telemetry.startTimeStamp = time.time()
telemetry.set_parameters_base64(scenario_telemetry, scenario_config[0])
try:
if len(scenario_config) > 1:
pre_action_output = post_actions.run(kubeconfig_path, scenario_config[1])
else:
pre_action_output = ""
with open(scenario_config[0], "r") as f:
scenario_config_yaml = yaml.full_load(f)
for scenario in scenario_config_yaml["scenarios"]:
scenario_namespace = get_yaml_item_value(
scenario, "namespace", ""
)
scenario_label = get_yaml_item_value(
scenario, "label_selector", ""
)
if scenario_namespace is not None and scenario_namespace.strip() != "":
if scenario_label is not None and scenario_label.strip() != "":
logging.error("You can only have namespace or label set in your namespace scenario")
logging.error(
"Current scenario config has namespace '%s' and label selector '%s'"
% (scenario_namespace, scenario_label)
)
logging.error(
"Please set either namespace to blank ('') or label_selector to blank ('') to continue"
)
# removed_exit
# sys.exit(1)
raise RuntimeError()
delete_count = get_yaml_item_value(
scenario, "delete_count", 1
)
run_count = get_yaml_item_value(scenario, "runs", 1)
run_sleep = get_yaml_item_value(scenario, "sleep", 10)
wait_time = get_yaml_item_value(scenario, "wait_time", 30)
logging.info(str(scenario_namespace) + str(scenario_label) + str(delete_count) + str(run_count) + str(run_sleep) + str(wait_time))
logging.info("done")
start_time = int(time.time())
for i in range(run_count):
killed_namespaces = {}
namespaces = kubecli.check_namespaces([scenario_namespace], scenario_label)
for j in range(delete_count):
if len(namespaces) == 0:
logging.error(
"Couldn't delete %s namespaces, not enough namespaces matching %s with label %s"
% (str(run_count), scenario_namespace, str(scenario_label))
)
# removed_exit
# sys.exit(1)
raise RuntimeError()
selected_namespace = namespaces[random.randint(0, len(namespaces) - 1)]
logging.info('Delete objects in selected namespace: ' + selected_namespace )
try:
# delete all pods in namespace
objects = delete_objects(kubecli,selected_namespace)
killed_namespaces[selected_namespace] = objects
logging.info("Deleted all objects in namespace %s was successful" % str(selected_namespace))
except Exception as e:
logging.info("Delete all objects in namespace %s was unsuccessful" % str(selected_namespace))
logging.info("Namespace action error: " + str(e))
raise RuntimeError()
namespaces.remove(selected_namespace)
logging.info("Waiting %s seconds between namespace deletions" % str(run_sleep))
time.sleep(run_sleep)
logging.info("Waiting for the specified duration: %s" % wait_duration)
time.sleep(wait_duration)
if len(scenario_config) > 1:
try:
failed_post_scenarios = post_actions.check_recovery(
kubeconfig_path, scenario_config, failed_post_scenarios, pre_action_output
)
except Exception as e:
logging.error("Failed to run post action checks: %s" % e)
# removed_exit
# sys.exit(1)
raise RuntimeError()
else:
failed_post_scenarios = check_all_running_deployment(killed_namespaces, wait_time, kubecli)
end_time = int(time.time())
cerberus.publish_kraken_status(config, failed_post_scenarios, start_time, end_time)
except (Exception, RuntimeError):
scenario_telemetry.exitStatus = 1
failed_scenarios.append(scenario_config[0])
log_exception(scenario_config[0])
else:
scenario_telemetry.exitStatus = 0
scenario_telemetry.endTimeStamp = time.time()
scenario_telemetries.append(scenario_telemetry)
return failed_scenarios, scenario_telemetries
def check_all_running_pods(kubecli: KrknKubernetes, namespace_name, wait_time):
timer = 0
while timer < wait_time:
pod_list = kubecli.list_pods(namespace_name)
pods_running = 0
for pod in pod_list:
pod_info = kubecli.get_pod_info(pod, namespace_name)
if pod_info.status != "Running" and pod_info.status != "Succeeded":
logging.info("Pods %s still not running or completed" % pod_info.name)
break
pods_running += 1
if len(pod_list) == pods_running:
break
timer += 5
time.sleep(5)
logging.info("Waiting 5 seconds for pods to become active")
# krkn_lib
def check_all_running_deployment(killed_namespaces, wait_time, kubecli: KrknKubernetes):
timer = 0
while timer < wait_time and killed_namespaces:
still_missing_ns = killed_namespaces.copy()
for namespace_name, objects in killed_namespaces.items():
still_missing_obj = objects.copy()
for obj_name, obj_list in objects.items():
if "deployments" == obj_name:
deployments = kubecli.get_deployment_ns(namespace_name)
if len(obj_list) == len(deployments):
still_missing_obj.pop(obj_name)
elif "replicasets" == obj_name:
replicasets = kubecli.get_all_replicasets(namespace_name)
if len(obj_list) == len(replicasets):
still_missing_obj.pop(obj_name)
elif "statefulsets" == obj_name:
statefulsets = kubecli.get_all_statefulset(namespace_name)
if len(obj_list) == len(statefulsets):
still_missing_obj.pop(obj_name)
elif "services" == obj_name:
services = kubecli.get_all_services(namespace_name)
if len(obj_list) == len(services):
still_missing_obj.pop(obj_name)
elif "daemonsets" == obj_name:
daemonsets = kubecli.get_daemonset(namespace_name)
if len(obj_list) == len(daemonsets):
still_missing_obj.pop(obj_name)
logging.info("Still missing objects " + str(still_missing_obj))
killed_namespaces[namespace_name] = still_missing_obj.copy()
if len(killed_namespaces[namespace_name].keys()) == 0:
logging.info("Wait for pods to become running for namespace: " + namespace_name)
check_all_running_pods(kubecli, namespace_name, wait_time)
still_missing_ns.pop(namespace_name)
killed_namespaces = still_missing_ns
if len(killed_namespaces.keys()) == 0:
return []
timer += 10
time.sleep(10)
logging.info("Waiting 10 seconds for objects in namespaces to become active")
logging.error("Objects are still not ready after waiting " + str(wait_time) + "seconds")
logging.error("Non active namespaces " + str(killed_namespaces))
return killed_namespaces

View File

@@ -1,19 +1,18 @@
#!/usr/bin/env python
import sys
import yaml
import logging
import time
import krkn_lib_kubernetes
from multiprocessing.pool import ThreadPool
from ..cerberus import setup as cerberus
from ..post_actions import actions as post_actions
from ..node_actions.aws_node_scenarios import AWS
from ..node_actions.openstack_node_scenarios import OPENSTACKCLOUD
from ..node_actions.az_node_scenarios import Azure
from ..node_actions.gcp_node_scenarios import GCP
from krkn_lib.k8s import KrknKubernetes
from krkn_lib.telemetry.k8s import KrknTelemetryKubernetes
from krkn_lib.models.telemetry import ScenarioTelemetry
from krkn_lib.utils.functions import log_exception
def multiprocess_nodes(cloud_object_function, nodes):
try:
@@ -40,8 +39,8 @@ def multiprocess_nodes(cloud_object_function, nodes):
# Inject the cluster shut down scenario
# krkn_lib_kubernetes
def cluster_shut_down(shut_down_config, kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
# krkn_lib
def cluster_shut_down(shut_down_config, kubecli: KrknKubernetes):
runs = shut_down_config["runs"]
shut_down_duration = shut_down_config["shut_down_duration"]
cloud_type = shut_down_config["cloud_type"]
@@ -59,7 +58,9 @@ def cluster_shut_down(shut_down_config, kubecli: krkn_lib_kubernetes.KrknLibKube
"Cloud type %s is not currently supported for cluster shut down" %
cloud_type
)
sys.exit(1)
# removed_exit
# sys.exit(1)
raise RuntimeError()
nodes = kubecli.list_nodes()
node_id = []
@@ -126,11 +127,18 @@ def cluster_shut_down(shut_down_config, kubecli: krkn_lib_kubernetes.KrknLibKube
logging.info("Successfully injected cluster_shut_down scenario!")
# krkn_lib_kubernetes
# krkn_lib
def run(scenarios_list, config, wait_duration, kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
def run(scenarios_list, config, wait_duration, kubecli: KrknKubernetes, telemetry: KrknTelemetryKubernetes) -> (list[str], list[ScenarioTelemetry]):
failed_post_scenarios = []
failed_scenarios = []
scenario_telemetries: list[ScenarioTelemetry] = []
for shut_down_config in scenarios_list:
scenario_telemetry = ScenarioTelemetry()
scenario_telemetry.scenario = shut_down_config
scenario_telemetry.startTimeStamp = time.time()
telemetry.set_parameters_base64(scenario_telemetry, shut_down_config[0])
if len(shut_down_config) > 1:
pre_action_output = post_actions.run("", shut_down_config[1])
else:
@@ -140,18 +148,32 @@ def run(scenarios_list, config, wait_duration, kubecli: krkn_lib_kubernetes.Krkn
shut_down_config_scenario = \
shut_down_config_yaml["cluster_shut_down_scenario"]
start_time = int(time.time())
cluster_shut_down(shut_down_config_scenario, kubecli)
logging.info(
"Waiting for the specified duration: %s" % (wait_duration)
)
time.sleep(wait_duration)
failed_post_scenarios = post_actions.check_recovery(
"", shut_down_config, failed_post_scenarios, pre_action_output
)
end_time = int(time.time())
cerberus.publish_kraken_status(
config,
failed_post_scenarios,
start_time,
end_time
)
try:
cluster_shut_down(shut_down_config_scenario, kubecli)
logging.info(
"Waiting for the specified duration: %s" % (wait_duration)
)
time.sleep(wait_duration)
failed_post_scenarios = post_actions.check_recovery(
"", shut_down_config, failed_post_scenarios, pre_action_output
)
end_time = int(time.time())
cerberus.publish_kraken_status(
config,
failed_post_scenarios,
start_time,
end_time
)
except (RuntimeError, Exception):
log_exception(shut_down_config[0])
failed_scenarios.append(shut_down_config[0])
scenario_telemetry.exitStatus = 1
else:
scenario_telemetry.exitStatus = 0
scenario_telemetry.endTimeStamp = time.time()
scenario_telemetries.append(scenario_telemetry)
return failed_scenarios, scenario_telemetries

View File

@@ -2,15 +2,18 @@ import datetime
import time
import logging
import re
import sys
import yaml
import random
import krkn_lib_kubernetes
from ..cerberus import setup as cerberus
from ..invoke import command as runcommand
from krkn_lib.k8s import KrknKubernetes
from krkn_lib.telemetry.k8s import KrknTelemetryKubernetes
from krkn_lib.models.telemetry import ScenarioTelemetry
from krkn_lib.utils.functions import get_yaml_item_value, log_exception
# krkn_lib_kubernetes
def pod_exec(pod_name, command, namespace, container_name, kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
# krkn_lib
def pod_exec(pod_name, command, namespace, container_name, kubecli:KrknKubernetes):
for i in range(5):
response = kubecli.exec_cmd_in_pod(
command,
@@ -39,8 +42,8 @@ def node_debug(node_name, command):
return response
# krkn_lib_kubernetes
def get_container_name(pod_name, namespace, kubecli: krkn_lib_kubernetes.KrknLibKubernetes, container_name=""):
# krkn_lib
def get_container_name(pod_name, namespace, kubecli:KrknKubernetes, container_name=""):
container_names = kubecli.get_containers_in_pod(pod_name, namespace)
if container_name != "":
@@ -62,9 +65,9 @@ def get_container_name(pod_name, namespace, kubecli: krkn_lib_kubernetes.KrknLib
return container_name
# krkn_lib_kubernetes
def skew_time(scenario, kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
skew_command = "date --set "
# krkn_lib
def skew_time(scenario, kubecli:KrknKubernetes):
skew_command = "date --date "
if scenario["action"] == "skew_date":
skewed_date = "00-01-01"
skew_command += skewed_date
@@ -87,13 +90,15 @@ def skew_time(scenario, kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
return "node", node_names
elif "pod" in scenario["object_type"]:
container_name = scenario.get("container_name", "")
container_name = get_yaml_item_value(scenario, "container_name", "")
pod_names = []
if "object_name" in scenario.keys() and scenario["object_name"]:
for name in scenario["object_name"]:
if "namespace" not in scenario.keys():
logging.error("Need to set namespace when using pod name")
sys.exit(1)
# removed_exit
# sys.exit(1)
raise RuntimeError()
pod_names.append([name, scenario["namespace"]])
elif "namespace" in scenario.keys() and scenario["namespace"]:
if "label_selector" not in scenario.keys():
@@ -127,7 +132,9 @@ def skew_time(scenario, kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
"Cannot find pods matching the namespace/label_selector, "
"please check"
)
sys.exit(1)
# removed_exit
# sys.exit(1)
raise RuntimeError()
pod_counter = 0
for pod in pod_names:
if len(pod) > 1:
@@ -152,7 +159,9 @@ def skew_time(scenario, kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
"in pod %s in namespace %s"
% (selected_container_name, pod[0], pod[1])
)
sys.exit(1)
# removed_exit
# sys.exit(1)
raise RuntimeError()
pod_names[pod_counter].append(selected_container_name)
else:
selected_container_name = get_container_name(
@@ -178,7 +187,9 @@ def skew_time(scenario, kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
scenario["namespace"]
)
)
sys.exit(1)
# removed_exit
# sys.exit(1)
raise RuntimeError()
pod_names[pod_counter].append(selected_container_name)
logging.info("Reset date/time on pod " + str(pod[0]))
pod_counter += 1
@@ -222,8 +233,8 @@ def string_to_date(obj_datetime):
return datetime.datetime(datetime.MINYEAR, 1, 1)
# krkn_lib_kubernetes
def check_date_time(object_type, names, kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
# krkn_lib
def check_date_time(object_type, names, kubecli:KrknKubernetes):
skew_command = "date"
not_reset = []
max_retries = 30
@@ -298,25 +309,42 @@ def check_date_time(object_type, names, kubecli: krkn_lib_kubernetes.KrknLibKube
return not_reset
# krkn_lib_kubernetes
def run(scenarios_list, config, wait_duration, kubecli: krkn_lib_kubernetes.KrknLibKubernetes):
# krkn_lib
def run(scenarios_list, config, wait_duration, kubecli:KrknKubernetes, telemetry: KrknTelemetryKubernetes) -> (list[str], list[ScenarioTelemetry]):
failed_scenarios = []
scenario_telemetries: list[ScenarioTelemetry] = []
for time_scenario_config in scenarios_list:
with open(time_scenario_config, "r") as f:
scenario_config = yaml.full_load(f)
for time_scenario in scenario_config["time_scenarios"]:
start_time = int(time.time())
object_type, object_names = skew_time(time_scenario, kubecli)
not_reset = check_date_time(object_type, object_names, kubecli)
if len(not_reset) > 0:
logging.info("Object times were not reset")
logging.info(
"Waiting for the specified duration: %s" % (wait_duration)
)
time.sleep(wait_duration)
end_time = int(time.time())
cerberus.publish_kraken_status(
config,
not_reset,
start_time,
end_time
)
scenario_telemetry = ScenarioTelemetry()
scenario_telemetry.scenario = time_scenario_config
scenario_telemetry.startTimeStamp = time.time()
telemetry.set_parameters_base64(scenario_telemetry, time_scenario_config)
try:
with open(time_scenario_config, "r") as f:
scenario_config = yaml.full_load(f)
for time_scenario in scenario_config["time_scenarios"]:
start_time = int(time.time())
object_type, object_names = skew_time(time_scenario, kubecli)
not_reset = check_date_time(object_type, object_names, kubecli)
if len(not_reset) > 0:
logging.info("Object times were not reset")
logging.info(
"Waiting for the specified duration: %s" % (wait_duration)
)
time.sleep(wait_duration)
end_time = int(time.time())
cerberus.publish_kraken_status(
config,
not_reset,
start_time,
end_time
)
except (RuntimeError, Exception):
scenario_telemetry.exitStatus = 1
log_exception(time_scenario_config)
failed_scenarios.append(time_scenario_config)
else:
scenario_telemetry.exitStatus = 0
scenario_telemetry.endTimeStamp = time.time()
scenario_telemetries.append(scenario_telemetry)
return failed_scenarios, scenario_telemetries

View File

@@ -1,100 +1,121 @@
import yaml
import sys
import logging
import time
from ..node_actions.aws_node_scenarios import AWS
from ..cerberus import setup as cerberus
from krkn_lib.telemetry.k8s import KrknTelemetryKubernetes
from krkn_lib.models.telemetry import ScenarioTelemetry
from krkn_lib.utils.functions import log_exception
def run(scenarios_list, config, wait_duration):
def run(scenarios_list, config, wait_duration, telemetry: KrknTelemetryKubernetes) -> (list[str], list[ScenarioTelemetry]) :
"""
filters the subnet of interest and applies the network acl
to create zone outage
"""
failed_post_scenarios = ""
scenario_telemetries: list[ScenarioTelemetry] = []
failed_scenarios = []
for zone_outage_config in scenarios_list:
if len(zone_outage_config) > 1:
with open(zone_outage_config, "r") as f:
zone_outage_config_yaml = yaml.full_load(f)
scenario_config = zone_outage_config_yaml["zone_outage"]
vpc_id = scenario_config["vpc_id"]
subnet_ids = scenario_config["subnet_id"]
duration = scenario_config["duration"]
cloud_type = scenario_config["cloud_type"]
ids = {}
acl_ids_created = []
scenario_telemetry = ScenarioTelemetry()
scenario_telemetry.scenario = zone_outage_config
scenario_telemetry.startTimeStamp = time.time()
telemetry.set_parameters_base64(scenario_telemetry, zone_outage_config)
try:
if len(zone_outage_config) > 1:
with open(zone_outage_config, "r") as f:
zone_outage_config_yaml = yaml.full_load(f)
scenario_config = zone_outage_config_yaml["zone_outage"]
vpc_id = scenario_config["vpc_id"]
subnet_ids = scenario_config["subnet_id"]
duration = scenario_config["duration"]
cloud_type = scenario_config["cloud_type"]
ids = {}
acl_ids_created = []
if cloud_type.lower() == "aws":
cloud_object = AWS()
else:
logging.error(
"Cloud type %s is not currently supported for "
"zone outage scenarios"
% cloud_type
)
sys.exit(1)
start_time = int(time.time())
for subnet_id in subnet_ids:
logging.info("Targeting subnet_id")
network_association_ids = []
associations, original_acl_id = \
cloud_object.describe_network_acls(vpc_id, subnet_id)
for entry in associations:
if entry["SubnetId"] == subnet_id:
network_association_ids.append(
entry["NetworkAclAssociationId"]
)
logging.info(
"Network association ids associated with "
"the subnet %s: %s"
% (subnet_id, network_association_ids)
)
acl_id = cloud_object.create_default_network_acl(vpc_id)
new_association_id = \
cloud_object.replace_network_acl_association(
network_association_ids[0], acl_id
if cloud_type.lower() == "aws":
cloud_object = AWS()
else:
logging.error(
"Cloud type %s is not currently supported for "
"zone outage scenarios"
% cloud_type
)
# removed_exit
# sys.exit(1)
raise RuntimeError()
# capture the orginal_acl_id, created_acl_id and
# new association_id to use during the recovery
ids[new_association_id] = original_acl_id
acl_ids_created.append(acl_id)
start_time = int(time.time())
# wait for the specified duration
logging.info(
"Waiting for the specified duration "
"in the config: %s" % (duration)
)
time.sleep(duration)
for subnet_id in subnet_ids:
logging.info("Targeting subnet_id")
network_association_ids = []
associations, original_acl_id = \
cloud_object.describe_network_acls(vpc_id, subnet_id)
for entry in associations:
if entry["SubnetId"] == subnet_id:
network_association_ids.append(
entry["NetworkAclAssociationId"]
)
logging.info(
"Network association ids associated with "
"the subnet %s: %s"
% (subnet_id, network_association_ids)
)
acl_id = cloud_object.create_default_network_acl(vpc_id)
new_association_id = \
cloud_object.replace_network_acl_association(
network_association_ids[0], acl_id
)
# replace the applied acl with the previous acl in use
for new_association_id, original_acl_id in ids.items():
cloud_object.replace_network_acl_association(
new_association_id,
original_acl_id
# capture the orginal_acl_id, created_acl_id and
# new association_id to use during the recovery
ids[new_association_id] = original_acl_id
acl_ids_created.append(acl_id)
# wait for the specified duration
logging.info(
"Waiting for the specified duration "
"in the config: %s" % (duration)
)
logging.info(
"Wating for 60 seconds to make sure "
"the changes are in place"
)
time.sleep(60)
time.sleep(duration)
# delete the network acl created for the run
for acl_id in acl_ids_created:
cloud_object.delete_network_acl(acl_id)
# replace the applied acl with the previous acl in use
for new_association_id, original_acl_id in ids.items():
cloud_object.replace_network_acl_association(
new_association_id,
original_acl_id
)
logging.info(
"Wating for 60 seconds to make sure "
"the changes are in place"
)
time.sleep(60)
logging.info(
"End of scenario. "
"Waiting for the specified duration: %s" % (wait_duration)
)
time.sleep(wait_duration)
# delete the network acl created for the run
for acl_id in acl_ids_created:
cloud_object.delete_network_acl(acl_id)
logging.info(
"End of scenario. "
"Waiting for the specified duration: %s" % (wait_duration)
)
time.sleep(wait_duration)
end_time = int(time.time())
cerberus.publish_kraken_status(
config,
failed_post_scenarios,
start_time,
end_time
)
except (RuntimeError, Exception):
scenario_telemetry.exitStatus = 1
failed_scenarios.append(zone_outage_config)
log_exception(zone_outage_config)
else:
scenario_telemetry.exitStatus = 0
scenario_telemetry.endTimeStamp = time.time()
scenario_telemetries.append(scenario_telemetry)
return failed_scenarios, scenario_telemetries
end_time = int(time.time())
cerberus.publish_kraken_status(
config,
failed_post_scenarios,
start_time,
end_time
)

View File

@@ -1,41 +1,41 @@
coverage
datetime
pyfiglet
PyYAML>=5.1
requests
boto3
google-api-python-client
azure-mgmt-compute
azure-keyvault
azure-identity
kubernetes
oauth2client>=4.1.3
python-openstackclient
gitpython
paramiko
setuptools==65.5.1
openshift-client
python-ipmi
podman-compose
docker-compose
docker
jinja2==3.0.3
itsdangerous==2.0.1
werkzeug==2.2.3
lxml >= 4.3.0
pyVmomi >= 6.7
zope.interface==5.4.0
aliyun-python-sdk-core==2.13.36
aliyun-python-sdk-ecs==4.24.25
arcaflow-plugin-sdk>=0.9.0
wheel
service_identity
git+https://github.com/vmware/vsphere-automation-sdk-python.git@v8.0.0.0
arcaflow >= 0.8.0
arcaflow-plugin-sdk >= 0.10.0
azure-identity
azure-keyvault
azure-mgmt-compute
boto3==1.28.61
coverage
datetime
docker
docker-compose
git+https://github.com/redhat-chaos/arcaflow-plugin-kill-pod.git
arcaflow >= 0.4.1
prometheus_api_client
git+https://github.com/vmware/vsphere-automation-sdk-python.git@v8.0.0.0
gitpython
google-api-python-client
ibm_cloud_sdk_core
ibm_vpc
itsdangerous==2.0.1
jinja2==3.0.3
krkn-lib>=1.4.1
kubernetes
lxml >= 4.3.0
oauth2client>=4.1.3
openshift-client
paramiko
podman-compose
prometheus_api_client
pyVmomi >= 6.7
pyfiglet
pytest
krkn-lib-kubernetes >= 0.1.1
python-ipmi
python-openstackclient
requests
service_identity
setuptools==65.5.1
werkzeug==3.0.1
wheel
zope.interface==5.4.0
pandas<2.0.0

View File

@@ -1,5 +1,5 @@
#!/usr/bin/env python
import json
import os
import sys
import yaml
@@ -12,7 +12,7 @@ import kraken.litmus.common_litmus as common_litmus
import kraken.time_actions.common_time_functions as time_actions
import kraken.performance_dashboards.setup as performance_dashboards
import kraken.pod_scenarios.setup as pod_scenarios
import kraken.namespace_actions.common_namespace_functions as namespace_actions
import kraken.service_disruption.common_service_disruption_functions as service_disruption
import kraken.shut_down.common_shut_down_func as shut_down
import kraken.node_actions.run as nodeaction
import kraken.managedcluster_scenarios.run as managedcluster_scenarios
@@ -25,7 +25,14 @@ import kraken.arcaflow_plugin as arcaflow_plugin
import server as server
import kraken.prometheus.client as promcli
from kraken import plugins
from krkn_lib_kubernetes import KrknLibKubernetes
from krkn_lib.k8s import KrknKubernetes
from krkn_lib.ocp import KrknOpenshift
from krkn_lib.telemetry.k8s import KrknTelemetryKubernetes
from krkn_lib.telemetry.ocp import KrknTelemetryOpenshift
from krkn_lib.models.telemetry import ChaosRunTelemetry
from krkn_lib.utils import SafeLogger
from krkn_lib.utils.functions import get_yaml_item_value
KUBE_BURNER_URL = (
"https://github.com/cloud-bulldozer/kube-burner/"
@@ -45,50 +52,78 @@ def main(cfg):
with open(cfg, "r") as f:
config = yaml.full_load(f)
global kubeconfig_path, wait_duration, kraken_config
distribution = config["kraken"].get("distribution", "openshift")
distribution = get_yaml_item_value(
config["kraken"], "distribution", "openshift"
)
kubeconfig_path = os.path.expanduser(
config["kraken"].get("kubeconfig_path", "")
get_yaml_item_value(config["kraken"], "kubeconfig_path", "")
)
kraken_config = cfg
chaos_scenarios = config["kraken"].get("chaos_scenarios", [])
publish_running_status = config["kraken"].get("publish_kraken_status", False)
port = config["kraken"].get("port")
signal_address = config["kraken"].get("signal_address")
run_signal = config["kraken"].get("signal_state", "RUN")
litmus_install = config["kraken"].get("litmus_install", True)
litmus_version = config["kraken"].get("litmus_version", "v1.9.1")
litmus_uninstall = config["kraken"].get("litmus_uninstall", False)
litmus_uninstall_before_run = config["kraken"].get(
"litmus_uninstall_before_run", True
chaos_scenarios = get_yaml_item_value(
config["kraken"], "chaos_scenarios", []
)
wait_duration = config["tunings"].get("wait_duration", 60)
iterations = config["tunings"].get("iterations", 1)
daemon_mode = config["tunings"].get("daemon_mode", False)
deploy_performance_dashboards = config["performance_monitoring"].get(
"deploy_dashboards", False
publish_running_status = get_yaml_item_value(
config["kraken"], "publish_kraken_status", False
)
dashboard_repo = config["performance_monitoring"].get(
"repo", "https://github.com/cloud-bulldozer/performance-dashboards.git"
port = get_yaml_item_value(config["kraken"], "port", 8081)
signal_address = get_yaml_item_value(
config["kraken"], "signal_address", "0.0.0.0")
run_signal = get_yaml_item_value(
config["kraken"], "signal_state", "RUN"
)
capture_metrics = config["performance_monitoring"].get("capture_metrics", False)
kube_burner_url = config["performance_monitoring"].get(
"kube_burner_binary_url",
litmus_install = get_yaml_item_value(
config["kraken"], "litmus_install", False
)
litmus_version = get_yaml_item_value(
config["kraken"], "litmus_version", "v1.9.1"
)
litmus_uninstall = get_yaml_item_value(
config["kraken"], "litmus_uninstall", True
)
litmus_uninstall_before_run = get_yaml_item_value(
config["kraken"], "litmus_uninstall_before_run", True
)
wait_duration = get_yaml_item_value(
config["tunings"], "wait_duration", 60
)
iterations = get_yaml_item_value(config["tunings"], "iterations", 1)
daemon_mode = get_yaml_item_value(
config["tunings"], "daemon_mode", False
)
deploy_performance_dashboards = get_yaml_item_value(
config["performance_monitoring"], "deploy_dashboards", False
)
dashboard_repo = get_yaml_item_value(
config["performance_monitoring"], "repo",
"https://github.com/cloud-bulldozer/performance-dashboards.git"
)
capture_metrics = get_yaml_item_value(
config["performance_monitoring"], "capture_metrics", False
)
kube_burner_url = get_yaml_item_value(
config["performance_monitoring"], "kube_burner_binary_url",
KUBE_BURNER_URL.format(version=KUBE_BURNER_VERSION),
)
config_path = config["performance_monitoring"].get(
"config_path", "config/kube_burner.yaml"
config_path = get_yaml_item_value(
config["performance_monitoring"], "config_path",
"config/kube_burner.yaml"
)
metrics_profile = config["performance_monitoring"].get(
"metrics_profile_path", "config/metrics-aggregated.yaml"
metrics_profile = get_yaml_item_value(
config["performance_monitoring"], "metrics_profile_path",
"config/metrics-aggregated.yaml"
)
prometheus_url = config["performance_monitoring"].get("prometheus_url", "")
prometheus_url = config["performance_monitoring"].get("prometheus_url")
prometheus_bearer_token = config["performance_monitoring"].get(
"prometheus_bearer_token", ""
"prometheus_bearer_token"
)
run_uuid = config["performance_monitoring"].get("uuid")
enable_alerts = get_yaml_item_value(
config["performance_monitoring"], "enable_alerts", False
)
alert_profile = config["performance_monitoring"].get("alert_profile")
check_critical_alerts = get_yaml_item_value(
config["performance_monitoring"], "check_critical_alerts", False
)
run_uuid = config["performance_monitoring"].get("uuid", "")
enable_alerts = config["performance_monitoring"].get("enable_alerts", False)
alert_profile = config["performance_monitoring"].get("alert_profile", "")
check_critical_alerts = config["performance_monitoring"].get("check_critical_alerts", False)
# Initialize clients
if (not os.path.isfile(kubeconfig_path) and
@@ -98,13 +133,37 @@ def main(cfg):
)
sys.exit(1)
logging.info("Initializing client to talk to the Kubernetes cluster")
# Generate uuid for the run
if run_uuid:
logging.info(
"Using the uuid defined by the user for the run: %s" % run_uuid
)
else:
run_uuid = str(uuid.uuid4())
logging.info("Generated a uuid for the run: %s" % run_uuid)
# request_id for telemetry is generated once here and used everywhere
telemetry_request_id = f"{int(time.time())}-{run_uuid}"
if config["telemetry"].get("run_tag"):
telemetry_request_id = f"{telemetry_request_id}-{config['telemetry']['run_tag']}"
telemetry_log_file = f'{config["telemetry"]["archive_path"]}/{telemetry_request_id}.log'
safe_logger = SafeLogger(filename=telemetry_log_file)
try:
kubeconfig_path
os.environ["KUBECONFIG"] = str(kubeconfig_path)
kubecli = KrknLibKubernetes(kubeconfig_path=kubeconfig_path)
except NameError:
# krkn-lib-kubernetes init
kubecli = KrknKubernetes(kubeconfig_path=kubeconfig_path)
ocpcli = KrknOpenshift(kubeconfig_path=kubeconfig_path)
except:
kubecli.initialize_clients(None)
# KrknTelemetry init
telemetry_k8s = KrknTelemetryKubernetes(safe_logger, kubecli)
telemetry_ocp = KrknTelemetryOpenshift(safe_logger, ocpcli)
# find node kraken might be running on
kubecli.find_kraken_node()
@@ -129,7 +188,9 @@ def main(cfg):
# Cluster info
logging.info("Fetching cluster info")
cv = kubecli.get_clusterversion_string()
cv = ""
if config["kraken"]["distribution"] == "openshift":
cv = ocpcli.get_clusterversion_string()
if cv != "":
logging.info(cv)
else:
@@ -141,14 +202,7 @@ def main(cfg):
if deploy_performance_dashboards:
performance_dashboards.setup(dashboard_repo, distribution)
# Generate uuid for the run
if run_uuid:
logging.info(
"Using the uuid defined by the user for the run: %s" % run_uuid
)
else:
run_uuid = str(uuid.uuid4())
logging.info("Generated a uuid for the run: %s" % run_uuid)
# Initialize the start iteration to 0
iteration = 0
@@ -171,7 +225,8 @@ def main(cfg):
# Capture the start time
start_time = int(time.time())
litmus_installed = False
chaos_telemetry = ChaosRunTelemetry()
chaos_telemetry.run_uuid = run_uuid
# Loop to run the chaos starts here
while int(iteration) < iterations and run_signal != "STOP":
# Inject chaos scenarios specified in the config
@@ -203,38 +258,43 @@ def main(cfg):
)
sys.exit(1)
elif scenario_type == "arcaflow_scenarios":
failed_post_scenarios = arcaflow_plugin.run(
scenarios_list, kubeconfig_path
failed_post_scenarios, scenario_telemetries = arcaflow_plugin.run(
scenarios_list, kubeconfig_path, telemetry_k8s
)
chaos_telemetry.scenarios.extend(scenario_telemetries)
elif scenario_type == "plugin_scenarios":
failed_post_scenarios = plugins.run(
failed_post_scenarios, scenario_telemetries = plugins.run(
scenarios_list,
kubeconfig_path,
kraken_config,
failed_post_scenarios,
wait_duration,
telemetry_k8s
)
# krkn_lib_kubernetes
chaos_telemetry.scenarios.extend(scenario_telemetries)
# krkn_lib
elif scenario_type == "container_scenarios":
logging.info("Running container scenarios")
failed_post_scenarios = pod_scenarios.container_run(
failed_post_scenarios, scenario_telemetries = pod_scenarios.container_run(
kubeconfig_path,
scenarios_list,
config,
failed_post_scenarios,
wait_duration,
kubecli
kubecli,
telemetry_k8s
)
chaos_telemetry.scenarios.extend(scenario_telemetries)
# Inject node chaos scenarios specified in the config
# krkn_lib_kubernetes
# krkn_lib
elif scenario_type == "node_scenarios":
logging.info("Running node scenarios")
nodeaction.run(scenarios_list, config, wait_duration, kubecli)
failed_post_scenarios, scenario_telemetries = nodeaction.run(scenarios_list, config, wait_duration, kubecli, telemetry_k8s)
chaos_telemetry.scenarios.extend(scenario_telemetries)
# Inject managedcluster chaos scenarios specified in the config
# krkn_lib_kubernetes
# krkn_lib
elif scenario_type == "managedcluster_scenarios":
logging.info("Running managedcluster scenarios")
managedcluster_scenarios.run(
@@ -243,11 +303,12 @@ def main(cfg):
# Inject time skew chaos scenarios specified
# in the config
# krkn_lib_kubernetes
# krkn_lib
elif scenario_type == "time_scenarios":
if distribution == "openshift":
logging.info("Running time skew scenarios")
time_actions.run(scenarios_list, config, wait_duration, kubecli)
failed_post_scenarios, scenario_telemetries = time_actions.run(scenarios_list, config, wait_duration, kubecli, telemetry_k8s)
chaos_telemetry.scenarios.extend(scenario_telemetries)
else:
logging.error(
"Litmus scenarios are currently "
@@ -295,46 +356,50 @@ def main(cfg):
sys.exit(1)
# Inject cluster shutdown scenarios
# krkn_lib_kubernetes
# krkn_lib
elif scenario_type == "cluster_shut_down_scenarios":
shut_down.run(scenarios_list, config, wait_duration, kubecli)
failed_post_scenarios, scenario_telemetries = shut_down.run(scenarios_list, config, wait_duration, kubecli, telemetry_k8s)
chaos_telemetry.scenarios.extend(scenario_telemetries)
# Inject namespace chaos scenarios
# krkn_lib_kubernetes
elif scenario_type == "namespace_scenarios":
logging.info("Running namespace scenarios")
namespace_actions.run(
# krkn_lib
elif scenario_type == "service_disruption_scenarios":
logging.info("Running service disruption scenarios")
failed_post_scenarios, scenario_telemetries = service_disruption.run(
scenarios_list,
config,
wait_duration,
failed_post_scenarios,
kubeconfig_path,
kubecli
kubecli,
telemetry_k8s
)
chaos_telemetry.scenarios.extend(scenario_telemetries)
# Inject zone failures
elif scenario_type == "zone_outages":
logging.info("Inject zone outages")
zone_outages.run(scenarios_list, config, wait_duration)
failed_post_scenarios, scenario_telemetries = zone_outages.run(scenarios_list, config, wait_duration, telemetry_k8s)
chaos_telemetry.scenarios.extend(scenario_telemetries)
# Application outages
elif scenario_type == "application_outages":
logging.info("Injecting application outage")
application_outage.run(
scenarios_list, config, wait_duration
)
failed_post_scenarios, scenario_telemetries = application_outage.run(
scenarios_list, config, wait_duration, telemetry_k8s)
chaos_telemetry.scenarios.extend(scenario_telemetries)
# PVC scenarios
# krkn_lib_kubernetes
# krkn_lib
elif scenario_type == "pvc_scenarios":
logging.info("Running PVC scenario")
pvc_scenario.run(scenarios_list, config, kubecli)
failed_post_scenarios, scenario_telemetries = pvc_scenario.run(scenarios_list, config, kubecli, telemetry_k8s)
chaos_telemetry.scenarios.extend(scenario_telemetries)
# Network scenarios
# krkn_lib_kubernetes
# krkn_lib
elif scenario_type == "network_chaos":
logging.info("Running Network Chaos")
network_chaos.run(scenarios_list, config, wait_duration, kubecli)
failed_post_scenarios, scenario_telemetries = network_chaos.run(scenarios_list, config, wait_duration, kubecli, telemetry_k8s)
# Check for critical alerts when enabled
if check_critical_alerts:
@@ -353,9 +418,45 @@ def main(cfg):
iteration += 1
logging.info("")
# Capture the end time
# telemetry
# in order to print decoded telemetry data even if telemetry collection
# is disabled, it's necessary to serialize the ChaosRunTelemetry object
# to json, and recreate a new object from it.
end_time = int(time.time())
# if platform is openshift will be collected
# Cloud platform and network plugins metadata
# through OCP specific APIs
if config["kraken"]["distribution"] == "openshift":
telemetry_ocp.collect_cluster_metadata(chaos_telemetry)
else:
telemetry_k8s.collect_cluster_metadata(chaos_telemetry)
decoded_chaos_run_telemetry = ChaosRunTelemetry(json.loads(chaos_telemetry.to_json()))
logging.info(f"Telemetry data:\n{decoded_chaos_run_telemetry.to_json()}")
if config["telemetry"]["enabled"]:
logging.info(f"telemetry data will be stored on s3 bucket folder: {telemetry_request_id}")
logging.info(f"telemetry upload log: {safe_logger.log_file_name}")
try:
telemetry_k8s.send_telemetry(config["telemetry"], telemetry_request_id, chaos_telemetry)
telemetry_k8s.put_cluster_events(telemetry_request_id, config["telemetry"], start_time, end_time)
# prometheus data collection is available only on Openshift
if config["telemetry"]["prometheus_backup"] and config["kraken"]["distribution"] == "openshift":
safe_logger.info("archives download started:")
prometheus_archive_files = telemetry_ocp.get_ocp_prometheus_data(config["telemetry"], telemetry_request_id)
safe_logger.info("archives upload started:")
telemetry_k8s.put_prometheus_data(config["telemetry"], prometheus_archive_files, telemetry_request_id)
if config["telemetry"]["logs_backup"]:
telemetry_ocp.put_ocp_logs(telemetry_request_id, config["telemetry"], start_time, end_time)
except Exception as e:
logging.error(f"failed to send telemetry data: {str(e)}")
else:
logging.info("telemetry collection disabled, skipping.")
# Capture the end time
# Capture metrics for the run
if capture_metrics:
logging.info("Capturing metrics")
@@ -387,7 +488,7 @@ def main(cfg):
else:
logging.error("Alert profile is not defined")
sys.exit(1)
if litmus_uninstall and litmus_installed:
common_litmus.delete_chaos(litmus_namespace, kubecli)
common_litmus.delete_chaos_experiments(litmus_namespace, kubecli)

View File

@@ -1,8 +1,9 @@
version: v0.1.0
input:
root: RootObject
objects:
RootObject:
id: RootObject
id: input_item
properties:
kubeconfig:
display:
@@ -60,17 +61,17 @@ input:
steps:
kubeconfig:
plugin: quay.io/arcalot/arcaflow-plugin-kubeconfig:latest
plugin: quay.io/arcalot/arcaflow-plugin-kubeconfig:0.2.0
input:
kubeconfig: !expr $.input.kubeconfig
stressng:
plugin: quay.io/arcalot/arcaflow-plugin-stressng:latest
plugin: quay.io/arcalot/arcaflow-plugin-stressng:0.5.0
step: workload
input:
cleanup: "true"
StressNGParams:
timeout: !expr $.input.duration
cleanup: "true"
items:
stressors:
- stressor: cpu
cpu_count: !expr $.input.cpu_count
cpu_method: !expr $.input.cpu_method

View File

@@ -1,3 +1,4 @@
version: v0.1.0
input:
root: RootObject
objects:

View File

@@ -0,0 +1,10 @@
deployer:
connection: {}
type: kubernetes
log:
level: debug
logged_outputs:
error:
level: error
success:
level: debug

View File

@@ -0,0 +1,13 @@
input_list:
- duration: 30s
io_block_size: 1m
io_workers: 1
io_write_bytes: 10m
kubeconfig: ''
namespace: default
node_selector: {}
target_pod_folder: /hog-data
target_pod_volume:
hostPath:
path: /tmp
name: node-volume

View File

@@ -0,0 +1,139 @@
version: v0.1.0
input:
root: RootObject
objects:
RootObject:
id: input_item
properties:
kubeconfig:
display:
description: The complete kubeconfig file as a string
name: Kubeconfig file contents
type:
type_id: string
required: true
namespace:
display:
description: The namespace where the container will be deployed
name: Namespace
type:
type_id: string
required: true
node_selector:
display:
description: kubernetes node name where the plugin must be deployed
type:
type_id: map
values:
type_id: string
keys:
type_id: string
required: true
duration:
display:
name: duration the scenario expressed in seconds
description: stop stress test after T seconds. One can also specify the units of time in
seconds, minutes, hours, days or years with the suffix s, m, h, d or y
type:
type_id: string
required: true
io_workers:
display:
description: number of workers
name: start N workers continually writing, reading and removing temporary files
type:
type_id: integer
required: true
io_block_size:
display:
description: single write size
name: specify size of each write in bytes. Size can be from 1 byte to 4MB.
type:
type_id: string
required: true
io_write_bytes:
display:
description: Total number of bytes written
name: write N bytes for each hdd process, the default is 1 GB. One can specify the size
as % of free space on the file system or in units of Bytes, KBytes, MBytes and
GBytes using the suffix b, k, m or g
type:
type_id: string
required: true
target_pod_folder:
display:
description: Target Folder
name: Folder in the pod where the test will be executed and the test files will be written
type:
type_id: string
required: true
target_pod_volume:
display:
name: kubernetes volume definition
description: the volume that will be attached to the pod. In order to stress
the node storage only hosPath mode is currently supported
type:
type_id: object
id: k8s_volume
properties:
name:
display:
description: name of the volume (must match the name in pod definition)
type:
type_id: string
required: true
hostPath:
display:
description: hostPath options expressed as string map (key-value)
type:
type_id: map
values:
type_id: string
keys:
type_id: string
required: true
required: true
steps:
kubeconfig:
plugin: quay.io/arcalot/arcaflow-plugin-kubeconfig:0.2.0
input:
kubeconfig: !expr $.input.kubeconfig
stressng:
plugin: quay.io/arcalot/arcaflow-plugin-stressng:0.5.0
step: workload
input:
cleanup: "true"
StressNGParams:
timeout: !expr $.input.duration
workdir: !expr $.input.target_pod_folder
stressors:
- stressor: hdd
hdd: !expr $.input.io_workers
hdd_bytes: !expr $.input.io_write_bytes
hdd_write_size: !expr $.input.io_block_size
deploy:
type: kubernetes
connection: !expr $.steps.kubeconfig.outputs.success.connection
pod:
metadata:
namespace: !expr $.input.namespace
labels:
arcaflow: stressng
spec:
nodeSelector: !expr $.input.node_selector
pluginContainer:
imagePullPolicy: Always
securityContext:
privileged: true
volumeMounts:
- mountPath: /hog-data
name: node-volume
volumes:
- !expr $.input.target_pod_volume
outputs:
success:
stressng: !expr $.steps.stressng.outputs.success

View File

@@ -0,0 +1,114 @@
version: v0.1.0
input:
root: RootObject
objects:
RootObject:
id: RootObject
properties:
input_list:
type:
type_id: list
items:
id: input_item
type_id: object
properties:
kubeconfig:
display:
description: The complete kubeconfig file as a string
name: Kubeconfig file contents
type:
type_id: string
required: true
namespace:
display:
description: The namespace where the container will be deployed
name: Namespace
type:
type_id: string
required: true
node_selector:
display:
description: kubernetes node name where the plugin must be deployed
type:
type_id: map
values:
type_id: string
keys:
type_id: string
required: true
duration:
display:
name: duration the scenario expressed in seconds
description: stop stress test after T seconds. One can also specify the units of time in
seconds, minutes, hours, days or years with the suffix s, m, h, d or y
type:
type_id: string
required: true
io_workers:
display:
description: number of workers
name: start N workers continually writing, reading and removing temporary files
type:
type_id: integer
required: true
io_block_size:
display:
description: single write size
name: specify size of each write in bytes. Size can be from 1 byte to 4MB.
type:
type_id: string
required: true
io_write_bytes:
display:
description: Total number of bytes written
name: write N bytes for each hdd process, the default is 1 GB. One can specify the size
as % of free space on the file system or in units of Bytes, KBytes, MBytes and
GBytes using the suffix b, k, m or g
type:
type_id: string
required: true
target_pod_folder:
display:
description: Target Folder
name: Folder in the pod where the test will be executed and the test files will be written
type:
type_id: string
required: true
target_pod_volume:
display:
name: kubernetes volume definition
description: the volume that will be attached to the pod. In order to stress
the node storage only hosPath mode is currently supported
type:
type_id: object
id: k8s_volume
properties:
name:
display:
description: name of the volume (must match the name in pod definition)
type:
type_id: string
required: true
hostPath:
display:
description: hostPath options expressed as string map (key-value)
type:
type_id: map
values:
type_id: string
keys:
type_id: string
required: true
required: true
steps:
workload_loop:
kind: foreach
items: !expr $.input.input_list
workflow: sub-workflow.yaml
parallelism: 1000
outputs:
success:
workloads: !expr $.steps.workload_loop.outputs.success.data

View File

@@ -1,8 +1,9 @@
version: v0.1.0
input:
root: RootObject
objects:
RootObject:
id: RootObject
id: input_item
properties:
kubeconfig:
display:
@@ -52,17 +53,17 @@ input:
steps:
kubeconfig:
plugin: quay.io/arcalot/arcaflow-plugin-kubeconfig:latest
plugin: quay.io/arcalot/arcaflow-plugin-kubeconfig:0.2.0
input:
kubeconfig: !expr $.input.kubeconfig
stressng:
plugin: quay.io/arcalot/arcaflow-plugin-stressng:latest
plugin: quay.io/arcalot/arcaflow-plugin-stressng:0.5.0
step: workload
input:
cleanup: "true"
StressNGParams:
timeout: !expr $.input.duration
cleanup: "true"
items:
stressors:
- stressor: vm
vm: !expr $.input.vm_workers
vm_bytes: !expr $.input.vm_bytes

View File

@@ -1,3 +1,4 @@
version: v0.1.0
input:
root: RootObject
objects:

View File

@@ -3,6 +3,6 @@ scenarios:
namespace: "openshift-etcd"
label_selector: "k8s-app=etcd"
container_name: "etcd"
action: "kill 1"
action: 1
count: 1
expected_recovery_time: 60

View File

@@ -0,0 +1,14 @@
# yaml-language-server: $schema=../plugin.schema.json
- id: pod_egress_shaping
config:
namespace: <namespace> # Required - Namespace of the pod to which traffic shaping need to be applied
label_selector: <label_selector> # When pod_name is not specified, pod with matching label_selector is selected for chaos scenario
pod_name: <pod name> # When label_selector is not specified, pod matching the name will be selected for the chaos scenario
network_params: # latency, loss and bandwidth are the three supported network parameters to alter for the chaos test
latency: <time> # Value is a string. For example : 50ms
loss: <fraction> # Loss is a fraction between 0 and 1. It has to be enclosed in quotes to treat it as a string. For example, '0.02%' (not 0.02%)
bandwidth: <rate> # Value is a string. For example: 100mbit
execution_type: <serial/parallel> # Used to specify whether you want to apply filters on interfaces one at a time or all at once. Default is 'parallel'
instance_count: <number> # Number of pods to perform action/select that match the label selector
wait_duration: <time_duration> # Default is 300. Ensure that it is at least about twice of test_duration
test_duration: <time_duration> # Default is 120

View File

@@ -0,0 +1,9 @@
- id: kill-pods
config:
namespace_pattern: ^openshift-monitoring$
label_selector: statefulset.kubernetes.io/pod-name=prometheus-k8s-0
- id: wait-for-pods
config:
namespace_pattern: ^openshift-monitoring$
label_selector: statefulset.kubernetes.io/pod-name=prometheus-k8s-0
count: 1

View File

@@ -2253,6 +2253,166 @@
"id",
"config"
]
},
{
"type": "object",
"title": "pod_egress_shaping Arcaflow scenarios",
"properties": {
"id": {
"type": "string",
"const": "pod_egress_shaping"
},
"config": {
"$defs": {
"EgressParams": {
"type": "object",
"properties": {
"namespace": {
"type": "string",
"minLength": 1,
"title": "Namespace",
"description": "Namespace of the pod to which filter need to be appliedfor details."
},
"kubeconfig_path": {
"type": "string",
"title": "Kubeconfig path",
"description": "Kubeconfig file as string\nSee https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/ for details."
},
"pod_name": {
"type": "string",
"title": "Pod name",
"description": "When label_selector is not specified, pod matching the name will beselected for the chaos scenario"
},
"label_selector": {
"type": "string",
"title": "Label selector",
"description": "Kubernetes label selector for the target pod. When pod_name is not specified, pod with matching label_selector is selected for chaos scenario"
},
"kraken_config": {
"type": "string",
"title": "Kraken Config",
"description": "Path to the config file of Kraken. Set this field if you wish to publish status onto Cerberus"
},
"test_duration": {
"type": "integer",
"minimum": 1,
"default": 90,
"title": "Test duration",
"description": "Duration for which each step of the ingress chaos testing is to be performed."
},
"wait_duration": {
"type": "integer",
"minimum": 1,
"default": 300,
"title": "Wait Duration",
"description": "Wait duration for finishing a test and its cleanup.Ensure that it is significantly greater than wait_duration"
},
"instance_count": {
"type": "integer",
"minimum": 1,
"default": 1,
"title": "Instance Count",
"description": "Number of pods to perform action/select that match the label selector."
},
"execution_type": {
"type": "string",
"default": "parallel",
"title": "Execution Type",
"description": "The order in which the ingress filters are applied. Execution type can be 'serial' or 'parallel'"
},
"network_params": {
"type": "object",
"propertyNames": {},
"additionalProperties": {
"type": "string"
},
"title": "Network Parameters",
"description": "The network filters that are applied on the interface. The currently supported filters are latency, loss and bandwidth"
}
},
"required": [
"namespace"
],
"additionalProperties": false,
"dependentRequired": {}
}
},
"type": "object",
"properties": {
"namespace": {
"type": "string",
"minLength": 1,
"title": "Namespace",
"description": "Namespace of the pod to which filter need to be appliedfor details."
},
"kubeconfig_path": {
"type": "string",
"title": "Kubeconfig path",
"description": "Kubeconfig file as string\nSee https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/ for details."
},
"pod_name": {
"type": "string",
"title": "Pod name",
"description": "When label_selector is not specified, pod matching the name will beselected for the chaos scenario"
},
"label_selector": {
"type": "string",
"title": "Label selector",
"description": "Kubernetes label selector for the target pod. When pod_name is not specified, pod with matching label_selector is selected for chaos scenario"
},
"kraken_config": {
"type": "string",
"title": "Kraken Config",
"description": "Path to the config file of Kraken. Set this field if you wish to publish status onto Cerberus"
},
"test_duration": {
"type": "integer",
"minimum": 1,
"default": 90,
"title": "Test duration",
"description": "Duration for which each step of the ingress chaos testing is to be performed."
},
"wait_duration": {
"type": "integer",
"minimum": 1,
"default": 300,
"title": "Wait Duration",
"description": "Wait duration for finishing a test and its cleanup.Ensure that it is significantly greater than wait_duration"
},
"instance_count": {
"type": "integer",
"minimum": 1,
"default": 1,
"title": "Instance Count",
"description": "Number of pods to perform action/select that match the label selector."
},
"execution_type": {
"type": "string",
"default": "parallel",
"title": "Execution Type",
"description": "The order in which the ingress filters are applied. Execution type can be 'serial' or 'parallel'"
},
"network_params": {
"type": "object",
"propertyNames": {},
"additionalProperties": {
"type": "string"
},
"title": "Network Parameters",
"description": "The network filters that are applied on the interface. The currently supported filters are latency, loss and bandwidth"
}
},
"required": [
"namespace"
],
"additionalProperties": false,
"dependentRequired": {}
}
},
"required": [
"id",
"config"
]
}
]
}

View File

@@ -0,0 +1,106 @@
# Chaos Recommendation Tool
This tool, designed for Redhat Kraken, operates through the command line and offers recommendations for chaos testing. It suggests probable chaos test cases that can disrupt application services by analyzing their behavior and assessing their susceptibility to specific fault types.
This tool profiles an application and gathers telemetry data such as CPU, Memory, and Network usage, analyzing it to suggest probable chaos scenarios. For optimal results, it is recommended to activate the utility while the application is under load.
## Pre-requisites
- Openshift Or Kubernetes Environment where the application is hosted
- Access to the telemetry data via the exposed Prometheus endpoint
- Python3
## Usage
1. To run
```
$ python3 -m venv chaos
$ source chaos/bin/activate
$ git clone https://github.com/redhat-chaos/krkn.git
$ cd krkn
$ pip3 install -r requirements.txt
$ python3 utils/chaos_recommender/chaos_recommender.py
```
2. Follow the prompts to provide the required information.
## Configuration
To run the recommender with a config file specify the config file path with the `-c` argument.
You can customize the default values by editing the `krkn/config/recommender_config.yaml` file. The configuration file contains the following options:
- `application`: Specify the application name.
- `namespace`: Specify the namespace name. If you want to profile
- `labels`: Specify the labels (not used).
- `kubeconfig`: Specify the location of the kubeconfig file (not used).
- `prometheus_endpoint`: Specify the prometheus endpoint (must).
- `auth_token`: Auth token to connect to prometheus endpoint (must).
- `scrape_duration`: For how long data should be fetched, e.g., '1m' (must).
- `chaos_library`: "kraken" (currently it only supports kraken).
- `chaos_tests`: (for output purpose only do not change if not needed)
- `GENERAL`: list of general purpose tests available in Krkn
- `MEM`: list of memory related tests available in Krkn
- `NETWORK`: list of network related tests available in Krkn
- `CPU`: list of memory related tests available in Krkn
*TIP:* to collect prometheus endpoint and token from your OpenShift cluster you can run the following commands:
```
prometheus_url=$(kubectl get routes -n openshift-monitoring prometheus-k8s --no-headers | awk '{print $2}')
#TO USE YOUR CURRENT SESSION TOKEN
token=$(oc whoami -t)
#TO CREATE A NEW TOKEN
token=$(kubectl create token -n openshift-monitoring prometheus-k8s --duration=6h || oc sa new-token -n openshift-monitoring prometheus-k8s)
```
You can also provide the input values through command-line arguments launching the recommender with `-o` option:
```
-o, --options Evaluate command line options
-a APPLICATION, --application APPLICATION
Kubernetes application name
-n NAMESPACE, --namespace NAMESPACE
Kubernetes application namespace
-l LABELS, --labels LABELS
Kubernetes application labels
-p PROMETHEUS_ENDPOINT, --prometheus-endpoint PROMETHEUS_ENDPOINT
Prometheus endpoint URI
-k KUBECONFIG, --kubeconfig KUBECONFIG
Kubeconfig path
-t TOKEN, --token TOKEN
Kubernetes authentication token
-s SCRAPE_DURATION, --scrape-duration SCRAPE_DURATION
Prometheus scrape duration
-i LIBRARY, --library LIBRARY
Chaos library
-L LOG_LEVEL, --log-level LOG_LEVEL
log level (DEBUG, INFO, WARNING, ERROR, CRITICAL
-M MEM [MEM ...], --MEM MEM [MEM ...]
Memory related chaos tests (space separated list)
-C CPU [CPU ...], --CPU CPU [CPU ...]
CPU related chaos tests (space separated list)
-N NETWORK [NETWORK ...], --NETWORK NETWORK [NETWORK ...]
Network related chaos tests (space separated list)
-G GENERIC [GENERIC ...], --GENERIC GENERIC [GENERIC ...]
Memory related chaos tests (space separated list)
```
If you provide the input values through command-line arguments, the corresponding config file inputs would be ignored.
## Podman & Docker image
To run the recommender image please visit the [krkn-hub](https://github.com/redhat-chaos/krkn-hub for further infos.
## How it works
After obtaining telemetry data, sourced either locally or from Prometheus, the tool conducts a comprehensive data analysis to detect anomalies. Employing the Z-score method and heatmaps, it identifies outliers by evaluating CPU, memory, and network usage against established limits. Services with Z-scores surpassing a specified threshold are categorized as outliers. This categorization classifies services as network, CPU, or memory-sensitive, consequently leading to the recommendation of relevant test cases.
## Customizing Thresholds and Options
You can customize the thresholds and options used for data analysis by modifying the `krkn/kraken/chaos_recommender/analysis.py` file. For example, you can adjust the threshold for identifying outliers by changing the value of the `threshold` variable in the `identify_outliers` function.
## Additional Files
- `config/recommender_config.yaml`: The configuration file containing default values for application, namespace, labels, and kubeconfig.
Happy Chaos!

View File

@@ -0,0 +1,117 @@
import argparse
import logging
import os.path
import sys
import yaml
# kraken module import for running the recommender
# both from the root directory and the recommender
# folder
sys.path.insert(0, './')
sys.path.insert(0, '../../')
import kraken.chaos_recommender.analysis as analysis
import kraken.chaos_recommender.prometheus as prometheus
from kubernetes import config as kube_config
def parse_arguments(parser):
# command line options
parser.add_argument("-c", "--config-file", action="store", help="Config file path")
parser.add_argument("-o", "--options", action="store_true", help="Evaluate command line options")
parser.add_argument("-n", "--namespace", action="store", default="", help="Kubernetes application namespace")
parser.add_argument("-p", "--prometheus-endpoint", action="store", default="", help="Prometheus endpoint URI")
parser.add_argument("-k", "--kubeconfig", action="store", default=kube_config.KUBE_CONFIG_DEFAULT_LOCATION, help="Kubeconfig path")
parser.add_argument("-t", "--token", action="store", default="", help="Kubernetes authentication token")
parser.add_argument("-s", "--scrape-duration", action="store", default="10m", help="Prometheus scrape duration")
parser.add_argument("-L", "--log-level", action="store", default="INFO", help="log level (DEBUG, INFO, WARNING, ERROR, CRITICAL")
parser.add_argument("-M", "--MEM", nargs='+', action="store", default=[],
help="Memory related chaos tests (space separated list)")
parser.add_argument("-C", "--CPU", nargs='+', action="store", default=[],
help="CPU related chaos tests (space separated list)")
parser.add_argument("-N", "--NETWORK", nargs='+', action="store", default=[],
help="Network related chaos tests (space separated list)")
parser.add_argument("-G", "--GENERIC", nargs='+', action="store", default=[],
help="Memory related chaos tests (space separated list)")
return parser.parse_args()
def read_configuration(config_file_path):
if not os.path.exists(config_file_path):
logging.error(f"Config file not found: {config_file_path}")
sys.exit(1)
with open(config_file_path, mode="r") as config_file:
config = yaml.safe_load(config_file)
log_level = config.get("log level", "INFO")
namespace = config.get("namespace", "")
kubeconfig = config.get("kubeconfig", kube_config.KUBE_CONFIG_DEFAULT_LOCATION)
prometheus_endpoint = config.get("prometheus_endpoint", "")
auth_token = config.get("auth_token", "")
scrape_duration = config.get("scrape_duration", "10m")
chaos_tests = config.get("chaos_tests" , {})
return (namespace, kubeconfig, prometheus_endpoint, auth_token, scrape_duration,
chaos_tests, log_level)
def prompt_input(prompt, default_value):
user_input = input(f"{prompt} [{default_value}]: ")
if user_input.strip():
return user_input
return default_value
def main():
parser = argparse.ArgumentParser(description="Krkn Chaos Recommender Command-Line tool")
args = parse_arguments(parser)
if args.config_file is None and not args.options:
logging.error("You have to either specify a config file path or pass recommender options as command line arguments")
parser.print_help()
sys.exit(1)
if args.config_file is not None:
(
namespace,
kubeconfig,
prometheus_endpoint,
auth_token,
scrape_duration,
chaos_tests,
log_level
) = read_configuration(args.config_file)
if args.options:
namespace = args.namespace
kubeconfig = args.kubeconfig
auth_token = args.token
scrape_duration = args.scrape_duration
log_level = args.log_level
prometheus_endpoint = args.prometheus_endpoint
chaos_tests = {"MEM": args.MEM, "GENERIC": args.GENERIC, "CPU": args.CPU, "NETWORK": args.NETWORK}
if log_level not in ["DEBUG","INFO", "WARNING", "ERROR","CRITICAL"]:
logging.error(f"{log_level} not a valid log level")
sys.exit(1)
logging.basicConfig(level=log_level)
logging.info("============================INPUTS===================================")
logging.info(f"Namespace: {namespace}")
logging.info(f"Kubeconfig: {kubeconfig}")
logging.info(f"Prometheus endpoint: {prometheus_endpoint}")
logging.info(f"Scrape duration: {scrape_duration}")
for test in chaos_tests.keys():
logging.info(f"Chaos tests {test}: {chaos_tests[test]}")
logging.info("=====================================================================")
logging.info("Starting Analysis ...")
logging.info("Fetching the Telemetry data")
file_path = prometheus.fetch_utilization_from_prometheus(prometheus_endpoint, auth_token, namespace, scrape_duration)
analysis(file_path, chaos_tests)
if __name__ == "__main__":
main()