Compare commits

...

161 Commits

Author SHA1 Message Date
Tullio Sebastiani
50742a793c updated krkn-lib to 2.1.0 (#588)
Signed-off-by: Tullio Sebastiani <tsebasti@redhat.com>
2024-03-06 11:30:01 -05:00
Naga Ravi Chaitanya Elluri
ba6a844544 Add /usr/local/bin to the path for krkn images
This is needed to ensure oc and kubectl binaries under /usr/local/bin
are accessible.

Signed-off-by: Naga Ravi Chaitanya Elluri <nelluri@redhat.com>
2024-03-04 16:03:40 -05:00
Tullio Sebastiani
7e7a917dba dockerfiles update (#585)
Signed-off-by: Tullio Sebastiani <tsebasti@redhat.com>
2024-03-04 15:59:53 +01:00
Tullio Sebastiani
b9c0bb39c7 checking post run alerts properties presence (#584)
added metric check

Signed-off-by: Tullio Sebastiani <tsebasti@redhat.com>
2024-03-01 18:30:54 +01:00
Tullio Sebastiani
706a886151 checking alert properties presence (#583)
typo fix

Signed-off-by: Tullio Sebastiani <tsebasti@redhat.com>
2024-03-01 17:58:21 +01:00
Tullio Sebastiani
a1cf9e2c00 fixed typo on funtests (#582)
Signed-off-by: Tullio Sebastiani <tsebasti@redhat.com>
2024-03-01 17:09:19 +01:00
Tullio Sebastiani
0f5dfcb823 fixed the telemetry funtest according to the new telemetry API
Signed-off-by: Tullio Sebastiani <tsebasti@redhat.com>
2024-03-01 09:48:56 -05:00
Tullio Sebastiani
1e1015e6e7 added new WS configuration to funtests
Signed-off-by: Tullio Sebastiani <tsebasti@redhat.com>
2024-02-29 11:35:00 -05:00
Tullio Sebastiani
c71ce31779 integrated new telemetry library for WS 2.0
Signed-off-by: Tullio Sebastiani <tsebasti@redhat.com>

updated krkn-lib version

Signed-off-by: Tullio Sebastiani <tsebasti@redhat.com>
2024-02-28 22:58:54 -05:00
Tullio Sebastiani
1298f220a6 Critical alerts collection and upload (#577)
* added prometheus client method for critical alerts

Signed-off-by: Tullio Sebastiani <tsebasti@redhat.com>

* adapted run_kraken to the new plugin method for critical_alerts collection + telemetry upload

Signed-off-by: Tullio Sebastiani <tsebasti@redhat.com>

* requirements.txt pointing temporarly to git

Signed-off-by: Tullio Sebastiani <tsebasti@redhat.com>

* fixed severity level

Signed-off-by: Tullio Sebastiani <tsebasti@redhat.com>

* added functional tests

Signed-off-by: Tullio Sebastiani <tsebasti@redhat.com>

* exit on post chaos critical alerts

Signed-off-by: Tullio Sebastiani <tsebasti@redhat.com>

log moved

Signed-off-by: Tullio Sebastiani <tsebasti@redhat.com>

* removed noisy log

Signed-off-by: Tullio Sebastiani <tsebasti@redhat.com>

fixed log

Signed-off-by: Tullio Sebastiani <tsebasti@redhat.com>

* updated requirements.txt to krkn-lib 1.4.13

Signed-off-by: Tullio Sebastiani <tsebasti@redhat.com>

* krkn lib

* added check on variable that makes kraken return 1 whether post critical alerts are > 0

Signed-off-by: Tullio Sebastiani <tsebasti@redhat.com>

---------

Signed-off-by: Tullio Sebastiani <tsebasti@redhat.com>
2024-02-28 09:48:29 -05:00
jtydlcak
24059fb731 Add json output file option for recommender (#511)
Output in terminal changed to use json structure.

The json output file names are in format
recommender_namespace_YYYY-MM-DD_HH-MM-SS.

The path to the json file can be specified. Default path is in
kraken/utils/chaos_recommender/recommender_output.

Signed-off-by: jtydlcak <139967002+jtydlack@users.noreply.github.com>
2024-02-27 11:09:00 -05:00
Naga Ravi Chaitanya Elluri
ab951adb78 Expose thresholds config options (#574)
This commit allows users to edit the thresholds in the chaos-recommender
config to be able to identify outliers based on their use case.

Fixes https://github.com/krkn-chaos/krkn/issues/509
Signed-off-by: Naga Ravi Chaitanya Elluri <nelluri@redhat.com>
2024-02-26 09:43:34 -05:00
Paige Rubendall
a9a7fb7e51 updating release version in dockerfiles (#578)
Signed-off-by: Paige Rubendall <prubenda@redhat.com>
2024-02-21 10:17:02 -05:00
Naga Ravi Chaitanya Elluri
5a8d5b0fe1 Allow critical alerts check when enable_alerts is disabled
This covers use case where user wants to just check for critical alerts
post chaos without having to enable the alerts evaluation feature which
evaluates prom queries specified in an alerts file.

Signed-off-by: Naga Ravi Chaitanya Elluri <nelluri@redhat.com>
2024-02-19 23:15:47 -05:00
Paige Rubendall
c440dc4b51 Taking out start and end time for critical alerts (#572)
* taking out start and end time"

Signed-off-by: Paige Rubendall <prubenda@redhat.com>

* adding only break when alert fires

Signed-off-by: Paige Rubendall <prubenda@redhat.com>

* fail at end if alert had fired

Signed-off-by: Paige Rubendall <prubenda@redhat.com>

* adding new krkn-lib function with no range

Signed-off-by: Paige Rubendall <prubenda@redhat.com>

* updating requirements to new krkn-lib

Signed-off-by: Paige Rubendall <prubenda@redhat.com>

---------

Signed-off-by: Paige Rubendall <prubenda@redhat.com>
2024-02-19 09:28:13 -05:00
Paige Rubendall
b174c51ee0 adding check if connection was properly set
Signed-off-by: Paige Rubendall <prubenda@redhat.com>
2024-02-15 17:28:20 -05:00
Paige Rubendall
fec0434ce1 adding upload to elastic search
Signed-off-by: Paige Rubendall <prubenda@redhat.com>
2024-02-13 12:01:40 -05:00
Tullio Sebastiani
1067d5ec8d changed telemetry endpoint for funtests (#571)
Signed-off-by: Tullio Sebastiani <tsebasti@redhat.com>
2024-02-13 17:06:20 +01:00
Tullio Sebastiani
85ea1ef7e1 Dockerfiles update (#570)
Signed-off-by: Tullio Sebastiani <tsebasti@redhat.com>
2024-02-09 17:20:06 +01:00
Tullio Sebastiani
2e38b8b033 Kubernetes prometheus telemetry + functional tests (#566)
added comment on the node selector input.yaml

Signed-off-by: Tullio Sebastiani <tsebasti@redhat.com>
2024-02-09 16:38:12 +01:00
Tullio Sebastiani
c7ea366756 frozen package versions (#569)
Signed-off-by: Tullio Sebastiani <tsebasti@redhat.com>
2024-02-09 16:10:25 +01:00
Paige Rubendall
67d4ee9fa2 updating comment to match query (#568)
Signed-off-by: Paige Rubendall <prubenda@redhat.com>
2024-02-08 22:09:37 -05:00
Paige Rubendall
fa59834bae updating release versin (#565)
Signed-off-by: Paige Rubendall <prubenda@redhat.com>
2024-01-25 11:12:00 -05:00
Paige Rubendall
f154bcb692 adding krkn report location
Signed-off-by: Paige Rubendall <prubenda@redhat.com>
2024-01-25 10:45:01 -05:00
Naga Ravi Chaitanya Elluri
60ece4b1b8 Use 0.38.0 wheel version to fix security vulnerability
Reported by https://snyk.io/

Signed-off-by: Naga Ravi Chaitanya Elluri <nelluri@redhat.com>
2024-01-25 09:51:19 -05:00
Naga Ravi Chaitanya Elluri
d660542a40 Add CNCF trademark guidelines and update community members (#560)
Signed-off-by: Naga Ravi Chaitanya Elluri <nelluri@redhat.com>
2024-01-24 14:13:53 -05:00
Naga Ravi Chaitanya Elluri
2e651798fa Update redhat-chaos references with krkn-chaos
The tools are now hosted under https://github.com/krkn-chaos

Signed-off-by: Naga Ravi Chaitanya Elluri <nelluri@redhat.com>
2024-01-24 13:40:39 -05:00
Tullio Sebastiani
f801dfce54 functional tests pointing to real scenario config files
Signed-off-by: Tullio Sebastiani <tsebasti@redhat.com>

typo

Signed-off-by: Tullio Sebastiani <tsebasti@redhat.com>

app_outage fix

Signed-off-by: Tullio Sebastiani <tsebasti@redhat.com>

typo

Signed-off-by: Tullio Sebastiani <tsebasti@redhat.com>

typo

Signed-off-by: Tullio Sebastiani <tsebasti@redhat.com>
2024-01-18 12:54:39 -05:00
Tullio Sebastiani
8b95458444 Dockerfile v1.5.5 (#558)
Signed-off-by: Tullio Sebastiani <tsebasti@redhat.com>
Co-authored-by: Naga Ravi Chaitanya Elluri <nelluri@redhat.com>
2024-01-17 17:06:51 +01:00
Naga Ravi Chaitanya Elluri
ce1ae78f1f Update new references in the docs
This commit also updates the support matrix docs for the time scenarios.

Signed-off-by: Naga Ravi Chaitanya Elluri <nelluri@redhat.com>
2024-01-17 10:47:49 -05:00
Tullio Sebastiani
967753489b arcaflow hog scenarios + app outage functional tests
Signed-off-by: Tullio Sebastiani <tsebasti@redhat.com>
2024-01-17 10:40:33 -05:00
Tullio Sebastiani
aa16cb1bf2 fixed io-hog scenario (#555)
Signed-off-by: Tullio Sebastiani <tsebasti@redhat.com>
2024-01-17 16:05:35 +01:00
Tullio Sebastiani
ac47e215d8 Functional Tests porting to kubernetes (#553)
* Functional Tests porting to kubernetes

Signed-off-by: Tullio Sebastiani <tsebasti@redhat.com>
2024-01-17 09:48:43 +01:00
Tullio Sebastiani
4f7c58106d Dockerfile v1.5.4 (#552)
Signed-off-by: Tullio Sebastiani <tsebasti@redhat.com>
2024-01-15 19:22:52 +01:00
Tullio Sebastiani
a7e5ae6c80 Replaced oc debug command execution on node with a native version (#547)
* native time skew feature

Signed-off-by: Tullio Sebastiani <tsebasti@redhat.com>

* fixed podname conflict issue

Signed-off-by: Tullio Sebastiani <tsebasti@redhat.com>

* updated krkn-lib to v1.4.6

Signed-off-by: Tullio Sebastiani <tsebasti@redhat.com>

* fixed pod conflict issue

Signed-off-by: Tullio Sebastiani <tsebasti@redhat.com>

---------

Signed-off-by: Tullio Sebastiani <tsebasti@redhat.com>
2024-01-15 12:15:38 -05:00
Tullio Sebastiani
aa030a21d3 Fixes the critical alerts exception with the start_time > end_time
Signed-off-by: Tullio Sebastiani <tsebasti@redhat.com>
2024-01-15 11:11:45 -05:00
Paige Rubendall
631f12bdff Adding push to both red hat and krkn chaos quay (#550)
* adding push to both red hat and krkn chaos quay

* tag redhat chaos from krkn-chaos image

* login to both quays
2024-01-12 13:58:50 -05:00
Naga Ravi Chaitanya Elluri
2525982c55 Rename repo name and update workflow
This commit also removes OpenShift references and updates source
in the dockerfile.

Signed-off-by: Naga Ravi Chaitanya Elluri <nelluri@redhat.com>
2024-01-12 13:21:37 -05:00
dependabot[bot]
9760d7d97d Bump jinja2 from 3.0.3 to 3.1.3
Bumps [jinja2](https://github.com/pallets/jinja) from 3.0.3 to 3.1.3.
- [Release notes](https://github.com/pallets/jinja/releases)
- [Changelog](https://github.com/pallets/jinja/blob/main/CHANGES.rst)
- [Commits](https://github.com/pallets/jinja/compare/3.0.3...3.1.3)

---
updated-dependencies:
- dependency-name: jinja2
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
2024-01-11 15:40:09 -05:00
Naga Ravi Chaitanya Elluri
720488c159 Add new blogs to the useful resources list (#546)
Signed-off-by: Naga Ravi Chaitanya Elluri <nelluri@redhat.com>
2024-01-10 15:45:36 -05:00
Naga Ravi Chaitanya Elluri
487a9f464c Deprecate long term metrics collection
This will be added back soon via native prometheus integration.

Signed-off-by: Naga Ravi Chaitanya Elluri <nelluri@redhat.com>
2024-01-10 15:08:58 -05:00
Tullio Sebastiani
d9e137e85a fixes prometheus url check on Kubernetes
Signed-off-by: Tullio Sebastiani <tsebasti@redhat.com>
2024-01-10 11:23:02 -05:00
Tullio Sebastiani
d6c8054275 changed docker files (#543)
Signed-off-by: Tullio Sebastiani <tsebasti@redhat.com>
2024-01-10 12:22:42 +01:00
Paige Rubendall
462f93ad87 updating scenarios to have deployers (#537)
Signed-off-by: Tullio Sebastiani <tsebasti@redhat.com>
2024-01-10 12:06:15 +01:00
Mark McLoughlin
c200f0774f Fix some links in README.md (#542)
* Fix github.io link in README.md

Signed-off-by: Mark McLoughlin <markmc@redhat.com>

* Fix krknChaos-hub link in README.md

Signed-off-by: Mark McLoughlin <markmc@redhat.com>

* Fix kube-burner link in README.md

Signed-off-by: Mark McLoughlin <markmc@redhat.com>

---------

Signed-off-by: Mark McLoughlin <markmc@redhat.com>
2024-01-09 11:49:52 -05:00
Tullio Sebastiani
f2d7f88cb8 Krkn lib prometheus client + kube_burner references removed
Signed-off-by: Tullio Sebastiani <tsebasti@redhat.com>
2024-01-09 10:43:32 -05:00
Naga Ravi Chaitanya Elluri
93f1f19411 Focus on Kubernetes in the chaos testing guide
Signed-off-by: Naga Ravi Chaitanya Elluri <nelluri@redhat.com>
2024-01-08 20:09:12 -05:00
Naga Ravi Chaitanya Elluri
83c6058816 Use CNCF code of conduct
Signed-off-by: Naga Ravi Chaitanya Elluri <nelluri@redhat.com>
2024-01-03 10:53:47 -05:00
Naga Ravi Chaitanya Elluri
ee34d08f41 Rename Krkn to KrknChaos (#536)
This change will help reflect the use case of the tool more evidently.
2023-12-18 16:40:34 -08:00
Tullio Sebastiani
41f9573563 Fixes cluster shutdown issue with single entry in scenario config (#535)
* fixed cluster shutdown issue

* fixed config file list parsing
2023-12-15 14:22:25 -05:00
Tullio Sebastiani
c00328cc2b v1.4.5 (#534) 2023-12-15 11:00:41 +01:00
Tullio Sebastiani
c2431d548f functional tests adapted to newer version of crc-cloud + OCP 4.14.1 (#532) 2023-12-11 12:48:42 -05:00
Paige Rubendall
b03511850b taking out more litmus references 2023-12-03 13:10:52 +05:30
Sahil Shah
82db2fca75 Removing Litmus Scenario 2023-11-16 09:50:04 -05:00
Naga Ravi Chaitanya Elluri
afe8d817a9 Print telemetry data location to stdout
This commit also deprecates litmus integration.
2023-11-13 10:01:17 -05:00
Tullio Sebastiani
dbf02a6c22 updated krkn-lib to fix log filtering in prow (#527) 2023-11-09 17:47:00 +01:00
Naga Ravi Chaitanya Elluri
94bec8dc9b Add missing import to get values from yaml (#526)
* Add missing import to get values from yaml

* Update Dockerfile

* Update Dockerfile-ppc64le

---------

Co-authored-by: Tullio Sebastiani <tsebastiani@users.noreply.github.com>
2023-11-07 11:07:17 +01:00
yogananth-subramanian
2111bab9a4 Pod ingress network shaping Chaos scenario
The scenario introduces network latency, packet loss, and bandwidth restriction in the Pod's network interface. The purpose of this scenario is to observe faults caused by random variations in the network.

Below example config applies ingress traffic shaping to openshift console.
````
- id: pod_ingress_shaping
  config:
    namespace: openshift-console   # Required - Namespace of the pod to which filter need to be applied.
    label_selector: 'component=ui' # Applies traffic shaping to access openshift console.
    network_params:
        latency: 500ms             # Add 500ms latency to ingress traffic from the pod.
````
2023-11-06 23:34:17 -05:00
Kamesh Akella
b734f1dd05 Updating the chaos recommender README to point to accurate python version 2023-11-03 11:23:43 -04:00
Tullio Sebastiani
7a966a71d0 krkn integration of telemetry events collection (#523)
* function package refactoring in krkn-lib

* cluster events collection flag

* krkn-lib version bump

requirements

* dockerfile bump
2023-10-31 14:31:33 -04:00
Naga Ravi Chaitanya Elluri
43d891afd3 Bump telemetry archive default size to 500MB
This commit also removes litmus configs as they are not maintained.
2023-10-30 12:50:04 -04:00
Tullio Sebastiani
27fabfd4af OCP/K8S functionalities and packages splitting in krkn-lib (#507)
* krkn-lib ocp/k8s split adaptation

* library reference updated

* requirements update

* rebase with main + fix
2023-10-30 17:31:48 +01:00
Tullio Sebastiani
724068a978 Chaos recommender refactoring (#516)
* basic structure working

* config and options refactoring

nits and changes

* removed unused function with typo + fixed duration

* removed unused arguments

* minor fixes
2023-10-30 15:51:09 +01:00
Tullio Sebastiani
c9778474f1 arcaflow version bump (#520)
arcaflow version bump

stressng version typo
2023-10-27 18:09:46 +02:00
dependabot[bot]
6efdb2eb84 Bump werkzeug from 2.2.3 to 3.0.1
Bumps [werkzeug](https://github.com/pallets/werkzeug) from 2.2.3 to 3.0.1.
- [Release notes](https://github.com/pallets/werkzeug/releases)
- [Changelog](https://github.com/pallets/werkzeug/blob/main/CHANGES.rst)
- [Commits](https://github.com/pallets/werkzeug/compare/2.2.3...3.0.1)

---
updated-dependencies:
- dependency-name: werkzeug
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-10-26 11:09:29 -04:00
Naga Ravi Chaitanya Elluri
0e852da7d4 Deprecate kubernetes method of deploying Krkn
This will ensure users will use the recommended methods ( standlone or containerized )
of installing and running Krkn.
2023-10-25 12:32:46 -04:00
jtydlack
86d1fda325 Fix container scenario to accept only signal number (#350) (#485) 2023-10-24 16:51:48 -04:00
Naga Ravi Chaitanya Elluri
fc6344176b Add pointer to the CNCF sandbox discussion (#517)
Signed-off-by: Naga Ravi Chaitanya Elluri <nelluri@redhat.com>
2023-10-24 16:07:40 -04:00
jtydlack
ff469579e9 Use function get_yaml_item_value
Enables using default even though the value was loaded as None.
2023-10-24 14:55:49 -04:00
Naga Ravi Chaitanya Elluri
8cbd1c5e7f Add docs for installing chaos-recommender dependencies
This commit also updates roadmap around chaos-recommender.
2023-10-18 08:56:33 -04:00
Mudit Verma
5953e53b46 chaos recommendation entry in README (#510) 2023-10-16 11:26:32 -04:00
Mudit Verma
23f1fc044b Chaos Recommendation Utility (#508)
* application profiling based chaos recommendation

* deleted unused dir

* Update requirements.txt

Signed-off-by: Mudit Verma <mudiverm@in.ibm.com>

* Update config.ini

Signed-off-by: Mudit Verma <mudiverm@in.ibm.com>

* Update Makefile

Signed-off-by: Mudit Verma <mudiverm@in.ibm.com>

* Update Dockerfile

Signed-off-by: Mudit Verma <mudiverm@in.ibm.com>

* Update README.md

Signed-off-by: Mudit Verma <mudiverm@in.ibm.com>

---------

Signed-off-by: Mudit Verma <mudiverm@in.ibm.com>
2023-10-16 10:06:02 -04:00
Naga Ravi Chaitanya Elluri
69e386db53 Update roadmap with upcoming integrations and enhancements 2023-10-11 09:24:34 -04:00
Tullio Sebastiani
fef77cfc0e dockerfiles version update 2023-10-09 09:26:57 -04:00
Naga Ravi Chaitanya Elluri
eb2eabe029 Update community slack channel 2023-10-06 17:47:25 -04:00
Paige Rubendall
f7f1b2dfb0 Service disruption (#494)
* adding service disruption

* fixing kil services

* service log changes

* remvoing extra logging

* adding daemon set

* adding service disruption name changes

* cerberus config back

* bad string
2023-10-06 12:51:10 -04:00
Tullio Sebastiani
61356fd70b Added log telemetry piece to Krkn (#500)
* config

* log collection and upload

dictionary key fix

* escape regex in config.yaml

* bump krkn-lib version

* updated funtest github cli command

* update krkn-lib version to 1.3.2

* fixed requirements.txt
2023-10-06 10:08:46 -04:00
Tullio Sebastiani
067969a81a docker version update (#502) 2023-10-03 11:49:20 -04:00
Naga Ravi Chaitanya Elluri
972ac12921 Bump krkn-lib version (#499) 2023-10-03 17:00:07 +02:00
Tullio Sebastiani
ea813748ae added OCP/K8S functionalities split in the roadmap (#498) 2023-09-26 00:59:20 -04:00
Tullio Sebastiani
782d04c1b1 Prints the telemetry json after sending it to the webservice (#479)
* prints telemetry json after sending it to the service


deserialized base64 parameters

* json output even if telemetry collection is disabled.
2023-09-25 12:00:08 -04:00
Naga Ravi Chaitanya Elluri
2fb58f9897 Update roadmap with completed and new items 2023-09-21 15:33:44 -04:00
Tullio Sebastiani
5712721410 bumped docker version (#493)
Co-authored-by: Naga Ravi Chaitanya Elluri <nelluri@redhat.com>
2023-09-19 17:38:44 +02:00
Tullio Sebastiani
5567c06cd0 reinstated io-hog documentation (#492) 2023-09-19 17:27:59 +02:00
Sahil Shah
0ad4c11356 Fix for time scenario (#490) 2023-09-14 12:36:08 -04:00
Tullio Sebastiani
f6f686e8fe fixed io-hog scenario 2023-09-13 09:57:00 -04:00
Pratyusha Thammineni
3a66f8a5a3 Added Docker image build workflow status badge
This Allows the users to track the docker-build action in README.md
without navigationg to Actions tab on Github
2023-09-11 15:16:28 -04:00
Sahil Shah
585d519687 Adding Prometheus Disruption Scenario (#484) 2023-09-11 11:18:29 -04:00
yogananth-subramanian
e40fedcd44 Update etcd metrics 2023-09-08 11:11:42 -04:00
Paige Rubendall
1bb5b8ad04 adding comment 2023-08-29 21:54:17 -04:00
Paige Rubendall
725d58c8ce adding docs update again 2023-08-25 14:37:07 -04:00
Paige Rubendall
c6058da7a7 adding comment 2023-08-25 12:19:03 -04:00
Naga Ravi Chaitanya Elluri
06a8ed220c Bump release version to v1.4.4 2023-08-24 13:28:39 -04:00
Dustin Black
2c6b50bcdc bump arcaflow stressng plugin to 0.3.1 for bug fix 2023-08-24 12:50:28 -04:00
Naga Ravi Chaitanya Elluri
ed97c8df2b Bump release version to v1.4.3 2023-08-23 11:56:39 -04:00
Tullio Sebastiani
1baa68bcee engine bump to v0.6.1 2023-08-23 11:38:23 -04:00
Naga Ravi Chaitanya Elluri
ab84f09448 Use release tags vs latest for kubeconfig arca plugins (#473) 2023-08-23 09:59:33 -04:00
Dustin Black
6ace3c952b update to plugin release stressng:0.3.0 (#472) 2023-08-23 09:15:30 -04:00
Tullio Sebastiani
cee5259fd3 arcaflow scenarios removed from config.yaml 2023-08-23 08:50:19 -04:00
Tullio Sebastiani
f868000ebd Switched from krkn_lib_kubernetes to krkn_lib v1.0.0 (#469)
* changed all the references to krkn_lib_kubernetes to the new krkn_lib


changed all the references

* added krkn-lib pointer in documentation
2023-08-22 12:41:40 -04:00
pratyusha
d2d80be241 Updated config.yaml file with more scenarios (#468) 2023-08-21 11:26:33 -04:00
Naga Ravi Chaitanya Elluri
da464859c4 Bump release version to v1.4.2 2023-08-21 09:06:28 -04:00
Naga Ravi Chaitanya Elluri
ef88005985 Use images tagged with a release for hog scenarios
This commit switches from using latest images to a specific release
to review changes and update configs before using the latest bits.
2023-08-18 01:47:17 -04:00
Sahil Shah
102bdfdc96 Bump the release version to v1.4.1 (#465) 2023-08-17 10:18:11 -04:00
Sahil Shah
b569e6a9d5 Fixing pvc scenario 2023-08-16 16:05:18 -04:00
Tullio Sebastiani
dba38668b7 Dockerfile version bump 2023-08-11 11:12:56 -04:00
Tullio Sebastiani
39c0152b7b Krkn telemetry integration (#435)
* adapted config.yaml to the new feature

* temporarly pointing requirement.txt to the lib feature branch

* run_kraken.py + arcaflow scenarios refactoring


typo

* plugin scenario

* node scenarios


return failed scenarios

* container scenarios


fix

* time scenarios

* cluster shutdown  scenarios

* namespace scenarios

* zone outage scenarios

* app outage scenarios

* pvc scenarios

* network chaos scenarios

* run_kraken.py adaptation to telemetry

* prometheus telemetry upload + config.yaml


some fixes


typos and logs


max retries in config


telemetry id with run_uuid


safe_logger

* catch send_telemetry exception

* scenario collection bug fixes

* telemetry enabled check

* telemetry run tag

* requirements pointing to main + archive_size

* requirements.txt and config.yaml update

* added telemetry config to common config

* fixed scenario array elements for telemetry
2023-08-10 14:42:53 -04:00
jtydlack
491dc17267 Slo via http (#459)
* Fix typo

* Enable loading SLO profile via URL (#438)
2023-08-10 11:02:33 -04:00
yogananth-subramanian
b2b5002f45 Pod egress network shapping Chaos scenario
The scenario introduces network latency, packet loss, and bandwidth restriction in the Pod's network interface.
The purpose of this scenario is to observe faults caused by random variations in the network.

Below example config applies egress traffic shaping to openshift console.
````
- id: pod_egress_shaping
  config:
    namespace: openshift-console   # Required - Namespace of the pod to which filter need to be applied.
    label_selector: 'component=ui' # Applies traffic shaping to access openshift console.
    network_params:
        latency: 500ms             # Add 500ms latency to egress traffic from the pod.
````
2023-08-08 11:45:03 -04:00
Sahil Shah
fccd701dee Changed the image in volume_scenario.yml to a public one (#458) 2023-08-02 00:11:38 -04:00
José Castillo Lema
570631ebfc Widen except (#457)
Signed-off-by: José Castillo Lema <josecastillolema@gmail.com>
2023-07-26 18:53:52 +02:00
Naga Ravi Chaitanya Elluri
3ab9ca4319 Bump release version to v1.3.6 2023-07-24 14:06:37 -04:00
Naga Ravi Chaitanya Elluri
4084ffd9c6 Bake in virtualenv in krkn images
This is needed to tie the python version being used in case multiple
versions are installed.
2023-07-24 12:52:20 -04:00
Sahil Shah
19cc2c047f Fix for pvc scenario 2023-07-21 15:41:28 -04:00
Paige Rubendall
6197fc6722 separating build and test workflows (#448)
* separating build and test workflows

* only run build on pull request
2023-07-20 16:01:50 -04:00
Naga Ravi Chaitanya Elluri
2a8ac41ebf Bump release version to v1.3.5 2023-07-20 15:24:56 -04:00
Naga Ravi Chaitanya Elluri
b4d235d31c Bake in yq dependency in Kraken container images (#450)
This commit also updates ppc64le image to have the latest bits.
2023-07-20 13:17:52 -04:00
Naga Ravi Chaitanya Elluri
e4e4620d10 Bump release version to 1.3.4 (#447) 2023-06-28 16:30:28 -04:00
Naga Ravi Chaitanya Elluri
a2c24ab7ed Install latest version of krkn-lib-kubernetes (#446) 2023-06-28 15:21:19 -04:00
Naga Ravi Chaitanya Elluri
fe892fd9bf Switch from centos to redhat ubi base image
This replaces the base image for Kraken container images to use
redhat ubi image to be more secure and stable.
2023-06-22 12:10:51 -04:00
Naga Ravi Chaitanya Elluri
74613fdb4b Install oc and kubectl clients from stable releases
This makes sure latest clients are installed and used:
- This will avoid compatability issues with the server
- Fixes security vulnerabilities and CVEs
2023-06-20 15:39:53 -04:00
Naga Ravi Chaitanya Elluri
28c37c9353 Bump release version to v1.3.3 2023-06-16 09:42:46 -04:00
Naga Ravi Chaitanya Elluri
de0567b067 Tweak the etcd alert severity 2023-06-16 09:19:17 -04:00
Naga Ravi Chaitanya Elluri
83486557f1 Bump release version to v1.3.2 (#439) 2023-06-15 12:12:42 -04:00
Naga Ravi Chaitanya Elluri
ce409ea6fb Update kube-burner dependency version to 1.7.0 2023-06-15 11:55:17 -04:00
Naga Ravi Chaitanya Elluri
0eb8d38596 Expand SLOs profile to cover monitoring for more alerts
This commit:
- Also sets appropriate severity to avoid false failures for the
  test cases especially given that theses are monitored during the chaos
  vs post chaos. Critical alerts are all monitored post chaos with few
  monitored during the chaos that represent overall health and performance
  of the service.
- Renames Alerts to SLOs validation

Metrics reference: f09a492b13/cmd/kube-burner/ocp-config/alerts.yml
2023-06-14 16:58:36 -04:00
Tullio Sebastiani
68dc17bc44 krkn-lib-kubernetes refactoring proposal (#400)
* run_kraken.py updated + renamed kubernetes library folder


unstaged files


kubecli marker

* container scenarios updated

* node scenarios updated


typo


injected kubecli

* managed cluster scenarios updated

* time scenarios updated

* litmus scenarios updated

* cluster scenarios updated

* namespace scenarios updated

* pvc scenarios updated

* network chaos scenarios updated

* common_managed_cluster functions updated

* switched draft library to official one

* regression on rebase
2023-06-13 10:02:35 -04:00
Naga Ravi Chaitanya Elluri
572eeefaf4 Minor fixes
This commit fixes few typos and duplicate logs
2023-06-12 21:05:27 -04:00
Naga Ravi Chaitanya Elluri
81376bad56 Bump release version to v1.3.1
This updates the Krkn container images to use the latest v1.3.1
minor release: https://github.com/redhat-chaos/krkn/releases.
2023-06-07 14:41:09 -04:00
Tullio Sebastiani
72b46f8393 temporarly removed io-hog scenario (#433)
* temporarly removed io-hog scenario

* removed litmus documentation & config
2023-06-05 11:03:44 -04:00
José Castillo Lema
a7938e58d2 Allow kraken to run with environment variables instead of kubeconfig file (#429)
* Include check for inside k8s scenario

* Include check for inside k8s scenario (2)

* Include check for inside k8s scenario (3)

* Include check for inside k8s scenario (4)
2023-06-01 14:43:01 -04:00
Naga Ravi Chaitanya Elluri
9858f96c78 Change the severity of the etcd leader election check to warning
This is the first step towards the goal to only have metrics tracking
the overall health and performance of the component/cluster. For instance,
for etcd disruption scenarios, leader elections are expected, we should instead
track etcd leader availability and fsync latency under critical catergory vs leader
elections.
2023-05-31 11:50:20 -04:00
Tullio Sebastiani
c91e8db928 Added Tullio Sebastiani to the mantainers list 2023-05-25 06:18:33 -04:00
Naga Ravi Chaitanya Elluri
54ea98be9c Add enhancements being planned as part of the roadmap (#425) 2023-05-24 14:36:59 -04:00
Pradeep Surisetty
9748622e4f Add maintainers details 2023-05-24 10:38:53 -04:00
Pradeep Surisetty
47f93b39c2 Add Code of Conduct 2023-05-22 13:25:52 -04:00
Tullio Sebastiani
aa715bf566 bump Dockerfile to release v1.3.0 2023-05-15 12:50:44 -04:00
Tullio Sebastiani
b9c08a45db extracted the namespace as scenario input (#419)
fixed sub-workflow and input

Co-authored-by: Naga Ravi Chaitanya Elluri <nelluri@redhat.com>
2023-05-15 18:24:23 +02:00
Naga Ravi Chaitanya Elluri
d9f4607aa6 Add blogs and update roadmap 2023-05-15 11:50:16 -04:00
yogananth-subramanian
8806781a4f Pod network outage Chaos scenario
Pod network outage chaos scenario blocks traffic at pod level irrespective of the network policy used.
With the current network policies, it is not possible to explicitly block ports which are enabled
by allowed network policy rule. This chaos scenario addresses this issue by using OVS flow rules
to block ports related to the pod. It supports OpenShiftSDN and OVNKubernetes based networks.

Below example config blocks access to openshift console.
````
- id: pod_network_outage
  config:
    namespace: openshift-console
    direction:
        - ingress
    ingress_ports:
        - 8443
    label_selector: 'component=ui'
````
2023-05-15 10:43:58 -04:00
Tullio Sebastiani
83b811bee4 Arcaflow stress-ng hogs with parallelism support (#418)
* kubeconfig management for arcaflow + hogs scenario refactoring  

  * kubeconfig authentication parsing refactored to support arcaflow kubernetes deployer  
  * reimplemented all the hog scenarios to allow multiple parallel containers of the same scenarios 
  (eg. to stress two or more nodes in the same run simultaneously) 
  * updated documentation 
* removed sysbench scenarios


* recovered cpu hogs


* updated requirements.txt


* updated config.yaml

* added gitleaks file for test fixtures

* imported sys and logging

* removed config_arcaflow.yaml

* updated readme

* refactored arcaflow documentation entrypoint
2023-05-15 09:45:16 -04:00
Paige Rubendall
16ea18c718 Ibm plugin node scenario (#417)
* Node scenarios for ibmcloud

* adding openshift check info
2023-05-09 12:07:38 -04:00
Naga Ravi Chaitanya Elluri
1ab94754e3 Add missing parameters supported by container scenarios (#415)
Also renames retry_wait to expected_recovery_time to make it clear that
the Kraken will exit 1 if the container doesn't recover within the expected
time.
Fixes https://github.com/redhat-chaos/krkn/issues/414
2023-05-05 13:02:07 -04:00
Tullio Sebastiani
278b2bafd7 Kraken is pointing to a buggy kill-pod plugin implementation (#416) 2023-05-04 18:19:54 +02:00
Naga Ravi Chaitanya Elluri
bc863fa01f Add support to check for critical alerts
This commit enables users to opt in to check for critical alerts firing
in the cluster post chaos at the end of each scenario. Chaos scenario is
considered as failed if the cluster is unhealthy in which case user can
start debugging to fix and harden respective areas.

Fixes https://github.com/redhat-chaos/krkn/issues/410
2023-05-03 16:14:13 -04:00
Naga Ravi Chaitanya Elluri
900ca74d80 Reorganize the content from https://github.com/startx-lab (#346)
Moving the content around installing kraken using helm to the
chaos in practice section of the guide to showcase how startx-lab
is deploying and leveraging Kraken.
2023-04-24 13:51:49 -04:00
Tullio Sebastiani
82b8df4e85 kill-pod plugin dependency pointing to specific commit
switched to redhat-chaos repo
2023-04-20 08:26:51 -04:00
Tullio Sebastiani
691be66b0a kubeconfig_path in new_client_from_config
added clients in the same context of the config
2023-04-19 14:12:46 -04:00
Tullio Sebastiani
019b036f9f renamed trigger work from /test to funtest (#401)
added quotes


renamed trigger to funtest

Co-authored-by: Naga Ravi Chaitanya Elluri <nelluri@redhat.com>
2023-04-10 09:30:53 -04:00
Paige Rubendall
13fa711c9b adding privileged namespace (#399)
Co-authored-by: Naga Ravi Chaitanya Elluri <nelluri@redhat.com>
2023-04-06 16:18:57 -04:00
Naga Ravi Chaitanya Elluri
17f61625e4 Exit on critical alert failures
This commit captures and exits on non-zero return code i.e when
critical alerts are fired

Fixes https://github.com/redhat-chaos/krkn/issues/396
2023-03-27 12:43:57 -04:00
Tullio Sebastiani
3627b5ba88 cpu hog scenario + basic arcaflow documentation (#391)
typo


typo


updated documentation


fixed workflow map issue
2023-03-15 16:52:20 +01:00
Tullio Sebastiani
fee4f7d2bf arcaflow integration (#384)
arcaflow library version

Co-authored-by: Tullio Sebastiani <tsebasti@redhat.com>
2023-03-08 12:01:03 +01:00
Tullio Sebastiani
0534e03c48 removed useless step that was failing (#389)
removed only old namespace file cat

Co-authored-by: Tullio Sebastiani <tsebasti@redhat.com>
2023-02-23 16:28:09 +01:00
Tullio Sebastiani
bb9a19ab71 removed blocking event check 2023-02-22 09:41:52 -05:00
Tullio Sebastiani
c5b9554de5 check user's authorization before running functional tests
check users authorization before running functional tests


removed usesless checkout


step rename


typo in trigger
2023-02-21 12:38:34 -05:00
dependabot[bot]
e5f97434d3 Bump werkzeug from 2.0.3 to 2.2.3 (#385)
Bumps [werkzeug](https://github.com/pallets/werkzeug) from 2.0.3 to 2.2.3.
- [Release notes](https://github.com/pallets/werkzeug/releases)
- [Changelog](https://github.com/pallets/werkzeug/blob/main/CHANGES.rst)
- [Commits](https://github.com/pallets/werkzeug/compare/2.0.3...2.2.3)

---
updated-dependencies:
- dependency-name: werkzeug
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Naga Ravi Chaitanya Elluri <nelluri@redhat.com>
2023-02-20 14:34:31 -05:00
Tullio Sebastiani
8b18fa8a35 Github Action + functional tests (no *hog tests) (#382)
* Github Action + functional tests (no *hog tests)

* changed the trigger keyword to /test

* removed deprecated kill_pod scenario + added namespace to app_outage (new kill_pod)

* #365: renamed ingress_namespace scenario to network_diagnostrcs

* requested team filter added

---------

Co-authored-by: Tullio Sebastiani <tullio.sebastiani@x3solutions.it>
2023-02-16 09:42:33 +01:00
Paige Rubendall
93686ca736 new quay image reference 2023-01-31 17:21:45 -05:00
Naga Ravi Chaitanya Elluri
64f4c234e9 Add prom token creation step
This enables compatability with all OpenShift versions.
Reference PR by Paige in Cerberus: https://github.com/redhat-chaos/cerberus/pull/190.
2023-01-31 12:36:09 -05:00
Naga Ravi Chaitanya Elluri
915cc5db94 Bump release version to v1.2.0 2023-01-19 12:03:46 -05:00
170 changed files with 10227 additions and 2325 deletions

View File

@@ -1,70 +0,0 @@
name: Build Krkn
on:
push:
branches:
- main
pull_request:
jobs:
build:
runs-on: ubuntu-latest
steps:
- name: Check out code
uses: actions/checkout@v3
- name: Create multi-node KinD cluster
uses: redhat-chaos/actions/kind@main
- name: Install Python
uses: actions/setup-python@v4
with:
python-version: '3.9'
architecture: 'x64'
- name: Install environment
run: |
sudo apt-get install build-essential python3-dev
pip install --upgrade pip
pip install -r requirements.txt
- name: Run unit tests
run: python -m coverage run -a -m unittest discover -s tests -v
- name: Run CI
run: |
./CI/run.sh
cat ./CI/results.markdown >> $GITHUB_STEP_SUMMARY
echo >> $GITHUB_STEP_SUMMARY
- name: Upload CI logs
uses: actions/upload-artifact@v3
with:
name: ci-logs
path: CI/out
if-no-files-found: error
- name: Collect coverage report
run: |
python -m coverage html
- name: Publish coverage report to job summary
run: |
pip install html2text
html2text --ignore-images --ignore-links -b 0 htmlcov/index.html >> $GITHUB_STEP_SUMMARY
- name: Upload coverage data
uses: actions/upload-artifact@v3
with:
name: coverage
path: htmlcov
if-no-files-found: error
- name: Check CI results
run: grep Fail CI/results.markdown && false || true
- name: Build the Docker images
run: docker build --no-cache -t quay.io/chaos-kubox/krkn containers/
- name: Login in quay
if: github.ref == 'refs/heads/main' && github.event_name == 'push'
run: docker login quay.io -u ${QUAY_USER} -p ${QUAY_TOKEN}
env:
QUAY_USER: ${{ secrets.QUAY_USER_1 }}
QUAY_TOKEN: ${{ secrets.QUAY_TOKEN_1 }}
- name: Push the Docker images
if: github.ref == 'refs/heads/main' && github.event_name == 'push'
run: docker push quay.io/chaos-kubox/krkn
- name: Rebuild krkn-hub
if: github.ref == 'refs/heads/main' && github.event_name == 'push'
uses: redhat-chaos/actions/krkn-hub@main
with:
QUAY_USER: ${{ secrets.QUAY_USER_1 }}
QUAY_TOKEN: ${{ secrets.QUAY_TOKEN_1 }}

41
.github/workflows/docker-image.yml vendored Normal file
View File

@@ -0,0 +1,41 @@
name: Docker Image CI
on:
push:
branches:
- main
pull_request:
jobs:
build:
runs-on: ubuntu-latest
steps:
- name: Check out code
uses: actions/checkout@v3
- name: Build the Docker images
run: |
docker build --no-cache -t quay.io/krkn-chaos/krkn containers/
docker tag quay.io/krkn-chaos/krkn quay.io/redhat-chaos/krkn
- name: Login in quay
if: github.ref == 'refs/heads/main' && github.event_name == 'push'
run: docker login quay.io -u ${QUAY_USER} -p ${QUAY_TOKEN}
env:
QUAY_USER: ${{ secrets.QUAY_USERNAME }}
QUAY_TOKEN: ${{ secrets.QUAY_PASSWORD }}
- name: Push the KrknChaos Docker images
if: github.ref == 'refs/heads/main' && github.event_name == 'push'
run: docker push quay.io/krkn-chaos/krkn
- name: Login in to redhat-chaos quay
if: github.ref == 'refs/heads/main' && github.event_name == 'push'
run: docker login quay.io -u ${QUAY_USER} -p ${QUAY_TOKEN}
env:
QUAY_USER: ${{ secrets.QUAY_USER_1 }}
QUAY_TOKEN: ${{ secrets.QUAY_TOKEN_1 }}
- name: Push the RedHat Chaos Docker images
if: github.ref == 'refs/heads/main' && github.event_name == 'push'
run: docker push quay.io/redhat-chaos/krkn
- name: Rebuild krkn-hub
if: github.ref == 'refs/heads/main' && github.event_name == 'push'
uses: redhat-chaos/actions/krkn-hub@main
with:
QUAY_USER: ${{ secrets.QUAY_USERNAME }}
QUAY_TOKEN: ${{ secrets.QUAY_PASSWORD }}

134
.github/workflows/tests.yml vendored Normal file
View File

@@ -0,0 +1,134 @@
name: Functional & Unit Tests
on:
pull_request:
push:
branches:
- main
jobs:
tests:
# Common steps
name: Functional & Unit Tests
runs-on: ubuntu-latest
steps:
- name: Check out code
uses: actions/checkout@v3
- name: Create multi-node KinD cluster
uses: redhat-chaos/actions/kind@main
- name: Install Helm & add repos
run: |
curl https://raw.githubusercontent.com/helm/helm/main/scripts/get-helm-3 | bash
helm repo add prometheus-community https://prometheus-community.github.io/helm-charts
helm repo add stable https://charts.helm.sh/stable
helm repo update
- name: Deploy prometheus & Port Forwarding
run: |
kubectl create namespace prometheus-k8s
helm install \
--wait --timeout 360s \
kind-prometheus \
prometheus-community/kube-prometheus-stack \
--namespace prometheus-k8s \
--set prometheus.service.nodePort=30000 \
--set prometheus.service.type=NodePort \
--set grafana.service.nodePort=31000 \
--set grafana.service.type=NodePort \
--set alertmanager.service.nodePort=32000 \
--set alertmanager.service.type=NodePort \
--set prometheus-node-exporter.service.nodePort=32001 \
--set prometheus-node-exporter.service.type=NodePort
SELECTOR=`kubectl -n prometheus-k8s get service kind-prometheus-kube-prome-prometheus -o wide --no-headers=true | awk '{ print $7 }'`
POD_NAME=`kubectl -n prometheus-k8s get pods --selector="$SELECTOR" --no-headers=true | awk '{ print $1 }'`
kubectl -n prometheus-k8s port-forward $POD_NAME 9090:9090 &
sleep 5
- name: Install Python
uses: actions/setup-python@v4
with:
python-version: '3.9'
architecture: 'x64'
- name: Install environment
run: |
sudo apt-get install build-essential python3-dev
pip install --upgrade pip
pip install -r requirements.txt
- name: Deploy test workloads
run: |
kubectl apply -f CI/templates/outage_pod.yaml
kubectl wait --for=condition=ready pod -l scenario=outage --timeout=300s
kubectl apply -f CI/templates/container_scenario_pod.yaml
kubectl wait --for=condition=ready pod -l scenario=container --timeout=300s
kubectl create namespace namespace-scenario
kubectl apply -f CI/templates/time_pod.yaml
kubectl wait --for=condition=ready pod -l scenario=time-skew --timeout=300s
- name: Get Kind nodes
run: |
kubectl get nodes --show-labels=true
# Pull request only steps
- name: Run unit tests
if: github.event_name == 'pull_request'
run: python -m coverage run -a -m unittest discover -s tests -v
- name: Setup Pull Request Functional Tests
if: github.event_name == 'pull_request'
run: |
yq -i '.kraken.port="8081"' CI/config/common_test_config.yaml
yq -i '.kraken.signal_address="0.0.0.0"' CI/config/common_test_config.yaml
yq -i '.kraken.performance_monitoring="localhost:9090"' CI/config/common_test_config.yaml
echo "test_app_outages" > ./CI/tests/functional_tests
echo "test_container" >> ./CI/tests/functional_tests
echo "test_namespace" >> ./CI/tests/functional_tests
echo "test_net_chaos" >> ./CI/tests/functional_tests
echo "test_time" >> ./CI/tests/functional_tests
echo "test_arca_cpu_hog" >> ./CI/tests/functional_tests
echo "test_arca_memory_hog" >> ./CI/tests/functional_tests
echo "test_arca_io_hog" >> ./CI/tests/functional_tests
# Push on main only steps
- name: Configure AWS Credentials
if: github.ref == 'refs/heads/main' && github.event_name == 'push'
uses: aws-actions/configure-aws-credentials@v4
with:
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
aws-region : ${{ secrets.AWS_REGION }}
- name: Setup Post Merge Request Functional Tests
if: github.ref == 'refs/heads/main' && github.event_name == 'push'
run: |
yq -i '.kraken.port="8081"' CI/config/common_test_config.yaml
yq -i '.kraken.signal_address="0.0.0.0"' CI/config/common_test_config.yaml
yq -i '.kraken.performance_monitoring="localhost:9090"' CI/config/common_test_config.yaml
yq -i '.telemetry.username="${{secrets.TELEMETRY_USERNAME}}"' CI/config/common_test_config.yaml
yq -i '.telemetry.password="${{secrets.TELEMETRY_PASSWORD}}"' CI/config/common_test_config.yaml
echo "test_telemetry" > ./CI/tests/functional_tests
# Final common steps
- name: Run Functional tests
env:
AWS_BUCKET: ${{ secrets.AWS_BUCKET }}
run: |
./CI/run.sh
cat ./CI/results.markdown >> $GITHUB_STEP_SUMMARY
echo >> $GITHUB_STEP_SUMMARY
- name: Upload CI logs
uses: actions/upload-artifact@v3
with:
name: ci-logs
path: CI/out
if-no-files-found: error
- name: Collect coverage report
run: |
python -m coverage html
- name: Publish coverage report to job summary
run: |
pip install html2text
html2text --ignore-images --ignore-links -b 0 htmlcov/index.html >> $GITHUB_STEP_SUMMARY
- name: Upload coverage data
uses: actions/upload-artifact@v3
with:
name: coverage
path: htmlcov
if-no-files-found: error
- name: Check CI results
run: grep Fail CI/results.markdown && false || true

3
.gitignore vendored
View File

@@ -16,6 +16,7 @@ __pycache__/*
*.out
kube-burner*
kube_burner*
recommender_*.json
# Project files
.ropeproject
@@ -61,7 +62,7 @@ inspect.local.*
!CI/config/common_test_config.yaml
CI/out/*
CI/ci_results
CI/scenarios/*node.yaml
CI/legacy/*node.yaml
CI/results.markdown
#env

6
.gitleaks.toml Normal file
View File

@@ -0,0 +1,6 @@
[allowlist]
description = "Global Allowlist"
paths = [
'''kraken/arcaflow_plugin/fixtures/*'''
]

View File

@@ -1,7 +1,7 @@
## CI Tests
### First steps
Edit [my_tests](tests/my_tests) with tests you want to run
Edit [functional_tests](tests/functional_tests) with tests you want to run
### How to run
```./CI/run.sh```
@@ -11,7 +11,7 @@ This will run kraken using python, make sure python3 is set up and configured pr
### Adding a test case
1. Add in simple scenario yaml file to execute under [../CI/scenarios/](scenarios)
1. Add in simple scenario yaml file to execute under [../CI/scenarios/](legacy)
2. Copy [test_application_outages.sh](tests/test_app_outages.sh) for example on how to get started
@@ -27,7 +27,7 @@ This will run kraken using python, make sure python3 is set up and configured pr
e. 15: Make sure name of config in line 14 matches what you pass on this line
4. Add test name to [my_tests](../CI/tests/my_tests) file
4. Add test name to [functional_tests](../CI/tests/functional_tests) file
a. This will be the name of the file without ".sh"

View File

@@ -1,5 +1,5 @@
kraken:
distribution: openshift # Distribution can be kubernetes or openshift.
distribution: kubernetes # Distribution can be kubernetes or openshift.
kubeconfig_path: ~/.kube/config # Path to kubeconfig.
exit_on_failure: False # Exit when a post action scenario fails.
litmus_version: v1.13.6 # Litmus version to install.
@@ -15,17 +15,38 @@ cerberus:
performance_monitoring:
deploy_dashboards: False # Install a mutable grafana and load the performance dashboards. Enable this only when running on OpenShift.
repo: "https://github.com/cloud-bulldozer/performance-dashboards.git"
kube_burner_binary_url: "https://github.com/cloud-bulldozer/kube-burner/releases/download/v0.9.1/kube-burner-0.9.1-Linux-x86_64.tar.gz"
capture_metrics: False
config_path: config/kube_burner.yaml # Define the Elasticsearch url and index name in this config.
metrics_profile_path: config/metrics-aggregated.yaml
prometheus_url: # The prometheus url/route is automatically obtained in case of OpenShift, please set it when the distribution is Kubernetes.
prometheus_bearer_token: # The bearer token is automatically obtained in case of OpenShift, please set it when the distribution is Kubernetes. This is needed to authenticate with prometheus.
uuid: # uuid for the run is generated by default if not set.
enable_alerts: False # Runs the queries specified in the alert profile and displays the info or exits 1 when severity=error.
alert_profile: config/alerts # Path to alert profile with the prometheus queries.
alert_profile: config/alerts.yaml # Path to alert profile with the prometheus queries.
tunings:
wait_duration: 6 # Duration to wait between each chaos scenario.
iterations: 1 # Number of times to execute the scenarios.
daemon_mode: False # Iterations are set to infinity which means that the kraken will cause chaos forever.
telemetry:
enabled: False # enable/disables the telemetry collection feature
api_url: https://yvnn4rfoi7.execute-api.us-west-2.amazonaws.com/test #telemetry service endpoint
username: $TELEMETRY_USERNAME # telemetry service username
password: $TELEMETRY_PASSWORD # telemetry service password
prometheus_namespace: 'prometheus-k8s' # prometheus namespace
prometheus_pod_name: 'prometheus-kind-prometheus-kube-prome-prometheus-0' # prometheus pod_name
prometheus_container_name: 'prometheus'
prometheus_backup: True # enables/disables prometheus data collection
full_prometheus_backup: False # if is set to False only the /prometheus/wal folder will be downloaded.
backup_threads: 5 # number of telemetry download/upload threads
archive_path: /tmp # local path where the archive files will be temporarly stored
max_retries: 0 # maximum number of upload retries (if 0 will retry forever)
run_tag: '' # if set, this will be appended to the run folder in the bucket (useful to group the runs)
archive_size: 10000 # the size of the prometheus data archive size in KB. The lower the size of archive is
logs_backup: True
logs_filter_patterns:
- "(\\w{3}\\s\\d{1,2}\\s\\d{2}:\\d{2}:\\d{2}\\.\\d+).+" # Sep 9 11:20:36.123425532
- "kinit (\\d+/\\d+/\\d+\\s\\d{2}:\\d{2}:\\d{2})\\s+" # kinit 2023/09/15 11:20:36 log
- "(\\d{4}-\\d{2}-\\d{2}T\\d{2}:\\d{2}:\\d{2}\\.\\d+Z).+" # 2023-09-15T11:20:36.123425532Z log
oc_cli_path: /usr/bin/oc # optional, if not specified will be search in $PATH
events_backup: True # enables/disables cluster events collection
telemetry_group: "funtests"

View File

@@ -1,7 +1,20 @@
apiVersion: v1
kind: Namespace
metadata:
labels:
kubernetes.io/metadata.name: kraken
pod-security.kubernetes.io/audit: privileged
pod-security.kubernetes.io/enforce: privileged
pod-security.kubernetes.io/enforce-version: v1.24
pod-security.kubernetes.io/warn: privileged
security.openshift.io/scc.podSecurityLabelSync: "false"
name: kraken
---
apiVersion: v1
kind: PersistentVolume
metadata:
name: kraken-test-pv
namespace: kraken
labels:
type: local
spec:
@@ -17,6 +30,7 @@ apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: kraken-test-pvc
namespace: kraken
spec:
storageClassName: manual
accessModes:
@@ -29,6 +43,7 @@ apiVersion: v1
kind: Pod
metadata:
name: kraken-test-pod
namespace: kraken
spec:
volumes:
- name: kraken-test-pv
@@ -36,7 +51,7 @@ spec:
claimName: kraken-test-pvc
containers:
- name: kraken-test-container
image: 'image-registry.openshift-image-registry.svc:5000/openshift/httpd:latest'
image: 'quay.io/centos7/httpd-24-centos7:latest'
volumeMounts:
- mountPath: "/home/krake-dir/"
name: kraken-test-pv

View File

@@ -1,9 +1,25 @@
#!/bin/bash
set -x
MAX_RETRIES=60
ci_tests_loc="CI/tests/my_tests"
KUBECTL=`which kubectl 2>/dev/null`
[[ $? != 0 ]] && echo "[ERROR]: kubectl missing, please install it and try again" && exit 1
echo "running test suit consisting of ${ci_tests}"
wait_cluster_become_ready() {
COUNT=1
until `$KUBECTL get namespace > /dev/null 2>&1`
do
echo "[INF] waiting Kubernetes to become ready, after $COUNT check"
sleep 3
[[ $COUNT == $MAX_RETRIES ]] && echo "[ERR] max retries exceeded, failing" && exit 1
((COUNT++))
done
}
ci_tests_loc="CI/tests/functional_tests"
echo -e "********* Running Functional Tests Suite *********\n\n"
rm -rf CI/out
@@ -20,7 +36,32 @@ echo 'Test | Result | Duration' >> $results
echo '-----------------------|--------|---------' >> $results
# Run each test
for test_name in `cat CI/tests/my_tests`
failed_tests=()
for test_name in `cat CI/tests/functional_tests`
do
./CI/run_test.sh $test_name $results
#wait_cluster_become_ready
return_value=`./CI/run_test.sh $test_name $results`
if [[ $return_value == 1 ]]
then
echo "Failed"
failed_tests+=("$test_name")
fi
wait_cluster_become_ready
done
if (( ${#failed_tests[@]}>0 ))
then
echo -e "\n\n======================================================================"
echo -e "\n FUNCTIONAL TESTS FAILED ${failed_tests[*]} ABORTING"
echo -e "\n======================================================================\n\n"
for test in "${failed_tests[@]}"
do
echo -e "\n********** $test KRKN RUN OUTPUT **********\n"
cat "CI/out/$test.out"
echo -e "\n********************************************\n\n\n\n"
done
exit 1
fi

View File

@@ -1,5 +1,4 @@
#!/bin/bash
set -x
readonly SECONDS_PER_HOUR=3600
readonly SECONDS_PER_MINUTE=60
function get_time_format() {
@@ -14,9 +13,7 @@ ci_test=`echo $1`
results_file=$2
echo -e "\n======================================================================"
echo -e " CI test for ${ci_test} "
echo -e "======================================================================\n"
echo -e "test: ${ci_test}" >&2
ci_results="CI/out/$ci_test.out"
# Test ci
@@ -28,13 +25,16 @@ then
# if the test passes update the results and complete
duration=$SECONDS
duration=$(get_time_format $duration)
echo "$ci_test: Successful"
echo -e "> $ci_test: Successful\n" >&2
echo "$ci_test | Pass | $duration" >> $results_file
count=$retries
# return value for run.sh
echo 0
else
duration=$SECONDS
duration=$(get_time_format $duration)
echo "$ci_test: Failed"
echo -e "> $ci_test: Failed\n" >&2
echo "$ci_test | Fail | $duration" >> $results_file
echo "Logs for "$ci_test
# return value for run.sh
echo 1
fi

View File

@@ -1,5 +0,0 @@
application_outage: # Scenario to create an outage of an application by blocking traffic
duration: 10 # Duration in seconds after which the routes will be accessible
namespace: openshift-monitoring # Namespace to target - all application routes will go inaccessible if pod selector is empty
pod_selector: {} # Pods to target
block: [Ingress, Egress] # It can be Ingress or Egress or Ingress, Egress

View File

@@ -1,8 +0,0 @@
scenarios:
- name: "kill machine config container"
namespace: "openshift-machine-config-operator"
label_selector: "k8s-app=machine-config-server"
container_name: "hello-openshift"
action: "kill 1"
count: 1
retry_wait: 60

View File

@@ -1,31 +0,0 @@
---
kind: Pod
apiVersion: v1
metadata:
name: hello-pod
creationTimestamp:
labels:
name: hello-openshift
spec:
containers:
- name: hello-openshift
image: openshift/hello-openshift
ports:
- containerPort: 5050
protocol: TCP
resources: {}
volumeMounts:
- name: tmp
mountPath: "/tmp"
terminationMessagePath: "/dev/termination-log"
imagePullPolicy: IfNotPresent
securityContext:
capabilities: {}
privileged: false
volumes:
- name: tmp
emptyDir: {}
restartPolicy: Always
dnsPolicy: ClusterFirst
serviceAccount: ''
status: {}

View File

@@ -1,6 +0,0 @@
# yaml-language-server: $schema=../../scenarios/plugin.schema.json
- id: kill-pods
config:
label_selector: name=hello-openshift
namespace_pattern: ^default$
kill: 1

View File

@@ -1,7 +0,0 @@
scenarios:
- action: delete
namespace: "^.*ingress.*$"
label_selector:
runs: 1
sleep: 15
wait_time: 30

View File

@@ -1,6 +0,0 @@
network_chaos: # Scenario to create an outage by simulating random variations in the network.
duration: 10 # seconds
instance_count: 1
execution: serial
egress:
bandwidth: 100mbit

View File

@@ -1,34 +0,0 @@
apiVersion: litmuschaos.io/v1alpha1
kind: ChaosEngine
metadata:
name: nginx-chaos
namespace: litmus
spec:
# It can be true/false
annotationCheck: 'false'
# It can be active/stop
engineState: 'active'
chaosServiceAccount: litmus-sa
monitoring: false
# It can be delete/retain
jobCleanUpPolicy: 'delete'
experiments:
- name: node-cpu-hog
spec:
components:
env:
# set chaos duration (in sec) as desired
- name: TOTAL_CHAOS_DURATION
value: '10'
# Number of cores of node CPU to be consumed
- name: NODE_CPU_CORE
value: '1'
# percentage of total nodes to target
- name: NODES_AFFECTED_PERC
value: '30'
# ENTER THE COMMA SEPARATED TARGET NODES NAME
- name: TARGET_NODES
value: $WORKER_NODE

View File

@@ -1,34 +0,0 @@
apiVersion: litmuschaos.io/v1alpha1
kind: ChaosEngine
metadata:
name: nginx-chaos
namespace: litmus
spec:
# It can be true/false
annotationCheck: 'false'
# It can be active/stop
engineState: 'active'
chaosServiceAccount: litmus-sa
monitoring: false
# It can be delete/retain
jobCleanUpPolicy: 'delete'
experiments:
- name: node-cpu-hog
spec:
components:
env:
# set chaos duration (in sec) as desired
- name: TOTAL_CHAOS_DURATION
value: '10'
# Number of cores of node CPU to be consumed
- name: NODE_CPU_CORE
value: '1'
# percentage of total nodes to target
- name: NODES_AFFECTED_PERC
value: '30'
# ENTER THE COMMA SEPARATED TARGET NODES NAME
- name: TARGET_NODES
value:

View File

@@ -1,35 +0,0 @@
apiVersion: litmuschaos.io/v1alpha1
kind: ChaosEngine
metadata:
name: nginx-chaos
namespace: litmus
spec:
# It can be delete/retain
jobCleanUpPolicy: 'retain'
# It can be active/stop
engineState: 'active'
chaosServiceAccount: litmus-sa
experiments:
- name: node-io-stress
spec:
components:
env:
# set chaos duration (in sec) as desired
- name: TOTAL_CHAOS_DURATION
value: '10'
## specify the size as percentage of free space on the file system
- name: FILESYSTEM_UTILIZATION_PERCENTAGE
value: '100'
## Number of core of CPU
- name: CPU
value: '1'
## Total number of workers default value is 4
- name: NUMBER_OF_WORKERS
value: '3'
## enter the comma separated target nodes name
- name: TARGET_NODES
value: $WORKER_NODE

View File

@@ -1,35 +0,0 @@
apiVersion: litmuschaos.io/v1alpha1
kind: ChaosEngine
metadata:
name: nginx-chaos
namespace: litmus
spec:
# It can be delete/retain
jobCleanUpPolicy: 'retain'
# It can be active/stop
engineState: 'active'
chaosServiceAccount: litmus-sa
experiments:
- name: node-io-stress
spec:
components:
env:
# set chaos duration (in sec) as desired
- name: TOTAL_CHAOS_DURATION
value: '10'
## specify the size as percentage of free space on the file system
- name: FILESYSTEM_UTILIZATION_PERCENTAGE
value: '100'
## Number of core of CPU
- name: CPU
value: '1'
## Total number of workers default value is 4
- name: NUMBER_OF_WORKERS
value: '3'
## enter the comma separated target nodes name
- name: TARGET_NODES
value:

View File

@@ -1,28 +0,0 @@
apiVersion: litmuschaos.io/v1alpha1
kind: ChaosEngine
metadata:
name: nginx-chaos
namespace: litmus
spec:
# It can be delete/retain
jobCleanUpPolicy: 'retain'
# It can be active/stop
engineState: 'active'
chaosServiceAccount: litmus-sa
experiments:
- name: node-memory-hog
spec:
components:
env:
# set chaos duration (in sec) as desired
- name: TOTAL_CHAOS_DURATION
value: '10'
## Specify the size as percent of total node capacity Ex: '30'
## Note: For consuming memory in mebibytes change the variable to MEMORY_CONSUMPTION_MEBIBYTES
- name: MEMORY_CONSUMPTION_PERCENTAGE
value: '30'
# ENTER THE COMMA SEPARATED TARGET NODES NAME
- name: TARGET_NODES
value: $WORKER_NODE

View File

@@ -1,28 +0,0 @@
apiVersion: litmuschaos.io/v1alpha1
kind: ChaosEngine
metadata:
name: nginx-chaos
namespace: litmus
spec:
# It can be delete/retain
jobCleanUpPolicy: 'retain'
# It can be active/stop
engineState: 'active'
chaosServiceAccount: litmus-sa
experiments:
- name: node-memory-hog
spec:
components:
env:
# set chaos duration (in sec) as desired
- name: TOTAL_CHAOS_DURATION
value: '10'
## Specify the size as percent of total node capacity Ex: '30'
## Note: For consuming memory in mebibytes change the variable to MEMORY_CONSUMPTION_MEBIBYTES
- name: MEMORY_CONSUMPTION_PERCENTAGE
value: '30'
# ENTER THE COMMA SEPARATED TARGET NODES NAME
- name: TARGET_NODES
value:

View File

@@ -1,5 +0,0 @@
time_scenarios:
- action: skew_time
object_type: pod
label_selector: k8s-app=etcd
container_name: ""

View File

@@ -0,0 +1,16 @@
apiVersion: v1
kind: Pod
metadata:
name: container
labels:
scenario: container
spec:
hostNetwork: true
containers:
- name: fedtools
image: docker.io/fedora/tools
command:
- /bin/sh
- -c
- |
sleep infinity

View File

@@ -0,0 +1,16 @@
apiVersion: v1
kind: Pod
metadata:
name: outage
labels:
scenario: outage
spec:
hostNetwork: true
containers:
- name: fedtools
image: docker.io/fedora/tools
command:
- /bin/sh
- -c
- |
sleep infinity

View File

@@ -0,0 +1,16 @@
apiVersion: v1
kind: Pod
metadata:
name: time-skew
labels:
scenario: time-skew
spec:
hostNetwork: true
containers:
- name: fedtools
image: docker.io/fedora/tools
command:
- /bin/sh
- -c
- |
sleep infinity

View File

@@ -13,6 +13,6 @@ function error {
}
function get_node {
worker_node=$(oc get nodes --no-headers | grep worker | head -n 1)
worker_node=$(kubectl get nodes --no-headers | grep worker | head -n 1)
export WORKER_NODE=$worker_node
}

View File

@@ -0,0 +1 @@

View File

@@ -1 +0,0 @@
test_net_chaos

View File

@@ -7,9 +7,11 @@ trap finish EXIT
function functional_test_app_outage {
yq -i '.application_outage.duration=10' scenarios/openshift/app_outage.yaml
yq -i '.application_outage.pod_selector={"scenario":"outage"}' scenarios/openshift/app_outage.yaml
yq -i '.application_outage.namespace="default"' scenarios/openshift/app_outage.yaml
export scenario_type="application_outages"
export scenario_file="CI/scenarios/app_outage.yaml"
export scenario_file="scenarios/openshift/app_outage.yaml"
export post_config=""
envsubst < CI/config/common_test_config.yaml > CI/config/app_outage.yaml
python3 -m coverage run -a run_kraken.py -c CI/config/app_outage.yaml

View File

@@ -0,0 +1,19 @@
set -xeEo pipefail
source CI/tests/common.sh
trap error ERR
trap finish EXIT
function functional_test_arca_cpu_hog {
yq -i '.input_list[0].node_selector={"kubernetes.io/hostname":"kind-worker2"}' scenarios/arcaflow/cpu-hog/input.yaml
export scenario_type="arcaflow_scenarios"
export scenario_file="scenarios/arcaflow/cpu-hog/input.yaml"
export post_config=""
envsubst < CI/config/common_test_config.yaml > CI/config/arca_cpu_hog.yaml
python3 -m coverage run -a run_kraken.py -c CI/config/arca_cpu_hog.yaml
echo "Arcaflow CPU Hog: Success"
}
functional_test_arca_cpu_hog

View File

@@ -0,0 +1,19 @@
set -xeEo pipefail
source CI/tests/common.sh
trap error ERR
trap finish EXIT
function functional_test_arca_io_hog {
yq -i '.input_list[0].node_selector={"kubernetes.io/hostname":"kind-worker2"}' scenarios/arcaflow/io-hog/input.yaml
export scenario_type="arcaflow_scenarios"
export scenario_file="scenarios/arcaflow/io-hog/input.yaml"
export post_config=""
envsubst < CI/config/common_test_config.yaml > CI/config/arca_io_hog.yaml
python3 -m coverage run -a run_kraken.py -c CI/config/arca_io_hog.yaml
echo "Arcaflow IO Hog: Success"
}
functional_test_arca_io_hog

View File

@@ -0,0 +1,19 @@
set -xeEo pipefail
source CI/tests/common.sh
trap error ERR
trap finish EXIT
function functional_test_arca_memory_hog {
yq -i '.input_list[0].node_selector={"kubernetes.io/hostname":"kind-worker2"}' scenarios/arcaflow/memory-hog/input.yaml
export scenario_type="arcaflow_scenarios"
export scenario_file="scenarios/arcaflow/memory-hog/input.yaml"
export post_config=""
envsubst < CI/config/common_test_config.yaml > CI/config/arca_memory_hog.yaml
python3 -m coverage run -a run_kraken.py -c CI/config/arca_memory_hog.yaml
echo "Arcaflow Memory Hog: Success"
}
functional_test_arca_memory_hog

View File

@@ -8,9 +8,11 @@ trap finish EXIT
pod_file="CI/scenarios/hello_pod.yaml"
function functional_test_container_crash {
yq -i '.scenarios[0].namespace="default"' scenarios/openshift/app_outage.yaml
yq -i '.scenarios[0].label_selector="scenario=container"' scenarios/openshift/app_outage.yaml
yq -i '.scenarios[0].container_name="fedtools"' scenarios/openshift/app_outage.yaml
export scenario_type="container_scenarios"
export scenario_file="- CI/scenarios/container_scenario.yml"
export scenario_file="- scenarios/openshift/app_outage.yaml"
export post_config=""
envsubst < CI/config/common_test_config.yaml > CI/config/container_config.yaml

View File

@@ -1,20 +0,0 @@
set -xeEo pipefail
source CI/tests/common.sh
trap error ERR
trap finish EXIT
function functional_test_litmus_cpu {
export scenario_type="litmus_scenarios"
export scenario_file="- scenarios/templates/litmus-rbac.yaml"
export post_config="- CI/scenarios/node_cpu_hog_engine_node.yaml"
envsubst < CI/config/common_test_config.yaml > CI/config/litmus_config.yaml
envsubst < CI/scenarios/node_cpu_hog_engine.yaml > CI/scenarios/node_cpu_hog_engine_node.yaml
python3 -m coverage run -a run_kraken.py -c CI/config/litmus_config.yaml
echo "Litmus scenario test: Success"
}
functional_test_litmus_cpu

View File

@@ -1,20 +0,0 @@
set -xeEo pipefail
source CI/tests/common.sh
trap error ERR
trap finish EXIT
function functional_test_litmus_io {
export scenario_type="litmus_scenarios"
export scenario_file="- scenarios/templates/litmus-rbac.yaml"
export post_config="- CI/scenarios/node_io_engine_node.yaml"
envsubst < CI/config/common_test_config.yaml > CI/config/litmus_config.yaml
envsubst < CI/scenarios/node_io_engine.yaml > CI/scenarios/node_io_engine_node.yaml
python3 -m coverage run -a run_kraken.py -c CI/config/litmus_config.yaml
echo "Litmus scenario test: Success"
}
functional_test_litmus_io

View File

@@ -1,20 +0,0 @@
set -xeEo pipefail
source CI/tests/common.sh
trap error ERR
trap finish EXIT
function functional_test_litmus_mem {
export scenario_type="litmus_scenarios"
export scenario_file="- scenarios/templates/litmus-rbac.yaml"
export post_config="- CI/scenarios/node_mem_engine_node.yaml"
envsubst < CI/config/common_test_config.yaml > CI/config/litmus_config.yaml
envsubst < CI/scenarios/node_mem_engine.yaml > CI/scenarios/node_mem_engine_node.yaml
python3 -m coverage run -a run_kraken.py -c CI/config/litmus_config.yaml
echo "Litmus scenario $1 test: Success"
}
functional_test_litmus_mem "- CI/scenarios/node_mem_engine.yaml"

View File

@@ -7,12 +7,13 @@ trap finish EXIT
function funtional_test_namespace_deletion {
export scenario_type="namespace_scenarios"
export scenario_file="- CI/scenarios/ingress_namespace.yaml"
export scenario_file="- scenarios/openshift/ingress_namespace.yaml"
export post_config=""
yq '.scenarios[0].namespace="^namespace-scenario$"' -i scenarios/openshift/ingress_namespace.yaml
yq '.scenarios[0].wait_time=30' -i scenarios/openshift/ingress_namespace.yaml
yq '.scenarios[0].action="delete"' -i scenarios/openshift/ingress_namespace.yaml
envsubst < CI/config/common_test_config.yaml > CI/config/namespace_config.yaml
python3 -m coverage run -a run_kraken.py -c CI/config/namespace_config.yaml
echo $?
echo "Namespace scenario test: Success"
}

View File

@@ -7,9 +7,16 @@ trap finish EXIT
function functional_test_network_chaos {
yq -i '.network_chaos.duration=10' scenarios/openshift/network_chaos.yaml
yq -i '.network_chaos.node_name="kind-worker2"' scenarios/openshift/network_chaos.yaml
yq -i '.network_chaos.egress.bandwidth="100mbit"' scenarios/openshift/network_chaos.yaml
yq -i 'del(.network_chaos.interfaces)' scenarios/openshift/network_chaos.yaml
yq -i 'del(.network_chaos.label_selector)' scenarios/openshift/network_chaos.yaml
yq -i 'del(.network_chaos.egress.latency)' scenarios/openshift/network_chaos.yaml
yq -i 'del(.network_chaos.egress.loss)' scenarios/openshift/network_chaos.yaml
export scenario_type="network_chaos"
export scenario_file="CI/scenarios/network_chaos.yaml"
export scenario_file="scenarios/openshift/network_chaos.yaml"
export post_config=""
envsubst < CI/config/common_test_config.yaml > CI/config/network_chaos.yaml
python3 -m coverage run -a run_kraken.py -c CI/config/network_chaos.yaml

View File

@@ -1,19 +0,0 @@
set -xeEo pipefail
source CI/tests/common.sh
trap error ERR
trap finish EXIT
function funtional_test_pod_deletion {
export scenario_type="pod_scenarios"
export scenario_file="- CI/scenarios/hello_pod_killing.yml"
export post_config=""
envsubst < CI/config/common_test_config.yaml > CI/config/pod_config.yaml
python3 -m coverage run -a run_kraken.py -c CI/config/pod_config.yaml
echo $?
echo "Pod scenario test: Success"
}
funtional_test_pod_deletion

View File

@@ -0,0 +1,37 @@
set -xeEo pipefail
source CI/tests/common.sh
trap error ERR
trap finish EXIT
function functional_test_telemetry {
AWS_CLI=`which aws`
[ -z "$AWS_CLI" ]&& echo "AWS cli not found in path" && exit 1
[ -z "$AWS_BUCKET" ] && echo "AWS bucket not set in environment" && exit 1
export RUN_TAG="funtest-telemetry"
yq -i '.telemetry.enabled=True' CI/config/common_test_config.yaml
yq -i '.telemetry.full_prometheus_backup=True' CI/config/common_test_config.yaml
yq -i '.performance_monitoring.check_critical_alerts=True' CI/config/common_test_config.yaml
yq -i '.performance_monitoring.prometheus_url="http://localhost:9090"' CI/config/common_test_config.yaml
yq -i '.telemetry.run_tag=env(RUN_TAG)' CI/config/common_test_config.yaml
export scenario_type="arcaflow_scenarios"
export scenario_file="scenarios/arcaflow/cpu-hog/input.yaml"
export post_config=""
envsubst < CI/config/common_test_config.yaml > CI/config/telemetry.yaml
python3 -m coverage run -a run_kraken.py -c CI/config/telemetry.yaml
RUN_FOLDER=`cat CI/out/test_telemetry.out | grep amazonaws.com | sed -rn "s#.*https:\/\/.*\/files/(.*)#\1#p"`
$AWS_CLI s3 ls "s3://$AWS_BUCKET/$RUN_FOLDER/" | awk '{ print $4 }' > s3_remote_files
echo "checking if telemetry files are uploaded on s3"
cat s3_remote_files | grep events-00.json || ( echo "FAILED: events-00.json not uploaded" && exit 1 )
cat s3_remote_files | grep critical-alerts-00.json || ( echo "FAILED: critical-alerts-00.json not uploaded" && exit 1 )
cat s3_remote_files | grep prometheus-00.tar || ( echo "FAILED: prometheus backup not uploaded" && exit 1 )
cat s3_remote_files | grep telemetry.json || ( echo "FAILED: telemetry.json not uploaded" && exit 1 )
echo "all files uploaded!"
echo "Telemetry Collection: Success"
}
functional_test_telemetry

View File

@@ -7,8 +7,12 @@ trap finish EXIT
function functional_test_time_scenario {
yq -i '.time_scenarios[0].label_selector="scenario=time-skew"' scenarios/openshift/time_scenarios_example.yml
yq -i '.time_scenarios[0].container_name=""' scenarios/openshift/time_scenarios_example.yml
yq -i '.time_scenarios[0].namespace="default"' scenarios/openshift/time_scenarios_example.yml
yq -i '.time_scenarios[1].label_selector="kubernetes.io/hostname=kind-worker2"' scenarios/openshift/time_scenarios_example.yml
export scenario_type="time_scenarios"
export scenario_file="CI/scenarios/time_scenarios.yml"
export scenario_file="scenarios/openshift/time_scenarios_example.yml"
export post_config=""
envsubst < CI/config/common_test_config.yaml > CI/config/time_config.yaml

104
CODE_OF_CONDUCT.md Normal file
View File

@@ -0,0 +1,104 @@
## CNCF Community Code of Conduct v1.3
Other languages available:
- [Arabic/العربية](code-of-conduct-languages/ar.md)
- [Bulgarian/Български](code-of-conduct-languages/bg.md)
- [Chinese/中文](code-of-conduct-languages/zh.md)
- [Czech/Česky](code-of-conduct-languages/cs.md)
- [Farsi/فارسی](code-of-conduct-languages/fa.md)
- [French/Français](code-of-conduct-languages/fr.md)
- [German/Deutsch](code-of-conduct-languages/de.md)
- [Hindi/हिन्दी](code-of-conduct-languages/hi.md)
- [Indonesian/Bahasa Indonesia](code-of-conduct-languages/id.md)
- [Italian/Italiano](code-of-conduct-languages/it.md)
- [Japanese/日本語](code-of-conduct-languages/jp.md)
- [Korean/한국어](code-of-conduct-languages/ko.md)
- [Polish/Polski](code-of-conduct-languages/pl.md)
- [Portuguese/Português](code-of-conduct-languages/pt.md)
- [Russian/Русский](code-of-conduct-languages/ru.md)
- [Spanish/Español](code-of-conduct-languages/es.md)
- [Turkish/Türkçe](code-of-conduct-languages/tr.md)
- [Ukrainian/Українська](code-of-conduct-languages/uk.md)
- [Vietnamese/Tiếng Việt](code-of-conduct-languages/vi.md)
### Community Code of Conduct
As contributors, maintainers, and participants in the CNCF community, and in the interest of fostering
an open and welcoming community, we pledge to respect all people who participate or contribute
through reporting issues, posting feature requests, updating documentation,
submitting pull requests or patches, attending conferences or events, or engaging in other community or project activities.
We are committed to making participation in the CNCF community a harassment-free experience for everyone, regardless of age, body size, caste, disability, ethnicity, level of experience, family status, gender, gender identity and expression, marital status, military or veteran status, nationality, personal appearance, race, religion, sexual orientation, socioeconomic status, tribe, or any other dimension of diversity.
## Scope
This code of conduct applies:
* within project and community spaces,
* in other spaces when an individual CNCF community participant's words or actions are directed at or are about a CNCF project, the CNCF community, or another CNCF community participant.
### CNCF Events
CNCF events that are produced by the Linux Foundation with professional events staff are governed by the Linux Foundation [Events Code of Conduct](https://events.linuxfoundation.org/code-of-conduct/) available on the event page. This is designed to be used in conjunction with the CNCF Code of Conduct.
## Our Standards
The CNCF Community is open, inclusive and respectful. Every member of our community has the right to have their identity respected.
Examples of behavior that contributes to a positive environment include but are not limited to:
* Demonstrating empathy and kindness toward other people
* Being respectful of differing opinions, viewpoints, and experiences
* Giving and gracefully accepting constructive feedback
* Accepting responsibility and apologizing to those affected by our mistakes,
and learning from the experience
* Focusing on what is best not just for us as individuals, but for the
overall community
* Using welcoming and inclusive language
Examples of unacceptable behavior include but are not limited to:
* The use of sexualized language or imagery
* Trolling, insulting or derogatory comments, and personal or political attacks
* Public or private harassment in any form
* Publishing others' private information, such as a physical or email
address, without their explicit permission
* Violence, threatening violence, or encouraging others to engage in violent behavior
* Stalking or following someone without their consent
* Unwelcome physical contact
* Unwelcome sexual or romantic attention or advances
* Other conduct which could reasonably be considered inappropriate in a
professional setting
The following behaviors are also prohibited:
* Providing knowingly false or misleading information in connection with a Code of Conduct investigation or otherwise intentionally tampering with an investigation.
* Retaliating against a person because they reported an incident or provided information about an incident as a witness.
Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct.
By adopting this Code of Conduct, project maintainers commit themselves to fairly and consistently applying these principles to every aspect
of managing a CNCF project.
Project maintainers who do not follow or enforce the Code of Conduct may be temporarily or permanently removed from the project team.
## Reporting
For incidents occurring in the Kubernetes community, contact the [Kubernetes Code of Conduct Committee](https://git.k8s.io/community/committee-code-of-conduct) via <conduct@kubernetes.io>. You can expect a response within three business days.
For other projects, or for incidents that are project-agnostic or impact multiple CNCF projects, please contact the [CNCF Code of Conduct Committee](https://www.cncf.io/conduct/committee/) via <conduct@cncf.io>. Alternatively, you can contact any of the individual members of the [CNCF Code of Conduct Committee](https://www.cncf.io/conduct/committee/) to submit your report. For more detailed instructions on how to submit a report, including how to submit a report anonymously, please see our [Incident Resolution Procedures](https://github.com/cncf/foundation/blob/main/code-of-conduct/coc-incident-resolution-procedures.md). You can expect a response within three business days.
For incidents occurring at CNCF event that is produced by the Linux Foundation, please contact <eventconduct@cncf.io>.
## Enforcement
Upon review and investigation of a reported incident, the CoC response team that has jurisdiction will determine what action is appropriate based on this Code of Conduct and its related documentation.
For information about which Code of Conduct incidents are handled by project leadership, which incidents are handled by the CNCF Code of Conduct Committee, and which incidents are handled by the Linux Foundation (including its events team), see our [Jurisdiction Policy](https://github.com/cncf/foundation/blob/main/code-of-conduct/coc-committee-jurisdiction-policy.md).
## Amendments
Consistent with the CNCF Charter, any substantive changes to this Code of Conduct must be approved by the Technical Oversight Committee.
## Acknowledgements
This Code of Conduct is adapted from the Contributor Covenant
(http://contributor-covenant.org), version 2.0 available at
http://contributor-covenant.org/version/2/0/code_of_conduct/

12
MAINTAINERS.md Normal file
View File

@@ -0,0 +1,12 @@
## Overview
This document contains a list of maintainers in this repo.
## Current Maintainers
| Maintainer | GitHub ID | Email |
|---------------------| --------------------------------------------------------- | ----------------------- |
| Ravi Elluri | [chaitanyaenr](https://github.com/chaitanyaenr) | nelluri@redhat.com |
| Pradeep Surisetty | [psuriset](https://github.com/psuriset) | psuriset@redhat.com |
| Paige Rubendall | [paigerube14](https://github.com/paigerube14) | prubenda@redhat.com |
| Tullio Sebastiani | [tsebastiani](https://github.com/tsebastiani) | tsebasti@redhat.com |

View File

@@ -1,10 +1,11 @@
# Krkn aka Kraken
[![Docker Repository on Quay](https://quay.io/repository/chaos-kubox/krkn/status "Docker Repository on Quay")](https://quay.io/repository/chaos-kubox/krkn?tab=tags&tag=latest)
[![Docker Repository on Quay](https://quay.io/repository/krkn-chaos/krkn/status "Docker Repository on Quay")](https://quay.io/repository/krkn-chaos/krkn?tab=tags&tag=latest)
![Workflow-Status](https://github.com/krkn-chaos/krkn/actions/workflows/docker-image.yml/badge.svg)
![Krkn logo](media/logo.png)
Chaos and resiliency testing tool for Kubernetes and OpenShift.
Kraken injects deliberate failures into Kubernetes/OpenShift clusters to check if it is resilient to turbulent conditions.
Chaos and resiliency testing tool for Kubernetes.
Kraken injects deliberate failures into Kubernetes clusters to check if it is resilient to turbulent conditions.
### Workflow
@@ -17,28 +18,30 @@ Kraken injects deliberate failures into Kubernetes/OpenShift clusters to check i
### Chaos Testing Guide
[Guide](docs/index.md) encapsulates:
- Test methodology that needs to be embraced.
- Best practices that an OpenShift cluster, platform and applications running on top of it should take into account for best user experience, performance, resilience and reliability.
- Best practices that an Kubernetes cluster, platform and applications running on top of it should take into account for best user experience, performance, resilience and reliability.
- Tooling.
- Scenarios supported.
- Test environment recommendations as to how and where to run chaos tests.
- Chaos testing in practice.
The guide is hosted at https://redhat-chaos.github.io/krkn.
The guide is hosted at https://krkn-chaos.github.io/krkn.
### How to Get Started
Instructions on how to setup, configure and run Kraken can be found at [Installation](docs/installation.md).
You may consider utilizing the chaos recommendation tool prior to initiating the chaos runs to profile the application service(s) under test. This tool discovers a list of Krkn scenarios with a high probability of causing failures or disruptions to your application service(s). The tool can be accessed at [Chaos-Recommender](utils/chaos_recommender/README.md).
See the [getting started doc](docs/getting_started.md) on support on how to get started with your own custom scenario or editing current scenarios for your specific usage.
After installation, refer back to the below sections for supported scenarios and how to tweak the kraken config to load them on your cluster.
#### Running Kraken with minimal configuration tweaks
For cases where you want to run Kraken with minimal configuration changes, refer to [Kraken-hub](https://github.com/redhat-chaos/krkn-hub). One use case is CI integration where you do not want to carry around different configuration files for the scenarios.
For cases where you want to run Kraken with minimal configuration changes, refer to [krkn-hub](https://github.com/krkn-chaos/krkn-hub). One use case is CI integration where you do not want to carry around different configuration files for the scenarios.
### Setting up infrastructure dependencies
Kraken indexes the metrics specified in the profile into Elasticsearch in addition to leveraging Cerberus for understanding the health of the Kubernetes/OpenShift cluster under test. More information on the features is documented below. The infrastructure pieces can be easily installed and uninstalled by running:
Kraken indexes the metrics specified in the profile into Elasticsearch in addition to leveraging Cerberus for understanding the health of the Kubernetes cluster under test. More information on the features is documented below. The infrastructure pieces can be easily installed and uninstalled by running:
```
$ cd kraken
@@ -54,29 +57,30 @@ This will manage the Cerberus and Elasticsearch containers on the host on which
Instructions on how to setup the config and the options supported can be found at [Config](docs/config.md).
### Kubernetes/OpenShift chaos scenarios supported
### Kubernetes chaos scenarios supported
Scenario type | Kubernetes | OpenShift
--------------------------- | ------------- | -------------------- |
[Pod Scenarios](docs/pod_scenarios.md) | :heavy_check_mark: | :heavy_check_mark: |
[Container Scenarios](docs/container_scenarios.md) | :heavy_check_mark: | :heavy_check_mark: |
[Node Scenarios](docs/node_scenarios.md) | :heavy_check_mark: | :heavy_check_mark: |
[Time Scenarios](docs/time_scenarios.md) | :x: | :heavy_check_mark: |
[Litmus Scenarios](docs/litmus_scenarios.md) | :x: | :heavy_check_mark: |
[Cluster Shut Down Scenarios](docs/cluster_shut_down_scenarios.md) | :heavy_check_mark: | :heavy_check_mark: |
[Namespace Scenarios](docs/namespace_scenarios.md) | :heavy_check_mark: | :heavy_check_mark: |
[Zone Outage Scenarios](docs/zone_outage.md) | :heavy_check_mark: | :heavy_check_mark: |
[Application_outages](docs/application_outages.md) | :heavy_check_mark: | :heavy_check_mark: |
[PVC scenario](docs/pvc_scenario.md) | :heavy_check_mark: | :heavy_check_mark: |
[Network_Chaos](docs/network_chaos.md) | :heavy_check_mark: | :heavy_check_mark: |
[ManagedCluster Scenarios](docs/managedcluster_scenarios.md) | :heavy_check_mark: | :question: |
Scenario type | Kubernetes
--------------------------- | ------------- |
[Pod Scenarios](docs/pod_scenarios.md) | :heavy_check_mark: |
[Pod Network Scenarios](docs/pod_network_scenarios.md) | :x: |
[Container Scenarios](docs/container_scenarios.md) | :heavy_check_mark: |
[Node Scenarios](docs/node_scenarios.md) | :heavy_check_mark: |
[Time Scenarios](docs/time_scenarios.md) | :heavy_check_mark: |
[Hog Scenarios: CPU, Memory](docs/arcaflow_scenarios.md) | :heavy_check_mark: |
[Cluster Shut Down Scenarios](docs/cluster_shut_down_scenarios.md) | :heavy_check_mark: |
[Service Disruption Scenarios](docs/service_disruption_scenarios.md.md) | :heavy_check_mark: |
[Zone Outage Scenarios](docs/zone_outage.md) | :heavy_check_mark: |
[Application_outages](docs/application_outages.md) | :heavy_check_mark: |
[PVC scenario](docs/pvc_scenario.md) | :heavy_check_mark: |
[Network_Chaos](docs/network_chaos.md) | :heavy_check_mark: |
[ManagedCluster Scenarios](docs/managedcluster_scenarios.md) | :heavy_check_mark: |
### Kraken scenario pass/fail criteria and report
It is important to make sure to check if the targeted component recovered from the chaos injection and also if the Kubernetes/OpenShift cluster is healthy as failures in one component can have an adverse impact on other components. Kraken does this by:
It is important to make sure to check if the targeted component recovered from the chaos injection and also if the Kubernetes cluster is healthy as failures in one component can have an adverse impact on other components. Kraken does this by:
- Having built in checks for pod and node based scenarios to ensure the expected number of replicas and nodes are up. It also supports running custom scripts with the checks.
- Leveraging [Cerberus](https://github.com/openshift-scale/cerberus) to monitor the cluster under test and consuming the aggregated go/no-go signal to determine pass/fail post chaos. It is highly recommended to turn on the Cerberus health check feature available in Kraken. Instructions on installing and setting up Cerberus can be found [here](https://github.com/openshift-scale/cerberus#installation) or can be installed from Kraken using the [instructions](https://github.com/redhat-chaos/krkn#setting-up-infrastructure-dependencies). Once Cerberus is up and running, set cerberus_enabled to True and cerberus_url to the url where Cerberus publishes go/no-go signal in the Kraken config file. Cerberus can monitor [application routes](https://github.com/redhat-chaos/cerberus/blob/main/docs/config.md#watch-routes) during the chaos and fails the run if it encounters downtime as it is a potential downtime in a customers, or users environment as well. It is especially important during the control plane chaos scenarios including the API server, Etcd, Ingress etc. It can be enabled by setting `check_applicaton_routes: True` in the [Kraken config](https://github.com/redhat-chaos/krkn/blob/main/config/config.yaml) provided application routes are being monitored in the [cerberus config](https://github.com/redhat-chaos/krkn/blob/main/config/cerberus.yaml).
- Leveraging [kube-burner](docs/alerts.md) alerting feature to fail the runs in case of critical alerts.
- Leveraging [Cerberus](https://github.com/krkn-chaos/cerberus) to monitor the cluster under test and consuming the aggregated go/no-go signal to determine pass/fail post chaos. It is highly recommended to turn on the Cerberus health check feature available in Kraken. Instructions on installing and setting up Cerberus can be found [here](https://github.com/openshift-scale/cerberus#installation) or can be installed from Kraken using the [instructions](https://github.com/krkn-chaos/krkn#setting-up-infrastructure-dependencies). Once Cerberus is up and running, set cerberus_enabled to True and cerberus_url to the url where Cerberus publishes go/no-go signal in the Kraken config file. Cerberus can monitor [application routes](https://github.com/redhat-chaos/cerberus/blob/main/docs/config.md#watch-routes) during the chaos and fails the run if it encounters downtime as it is a potential downtime in a customers, or users environment as well. It is especially important during the control plane chaos scenarios including the API server, Etcd, Ingress etc. It can be enabled by setting `check_applicaton_routes: True` in the [Kraken config](https://github.com/redhat-chaos/krkn/blob/main/config/config.yaml) provided application routes are being monitored in the [cerberus config](https://github.com/redhat-chaos/krkn/blob/main/config/cerberus.yaml).
- Leveraging built-in alert collection feature to fail the runs in case of critical alerts.
### Signaling
In CI runs or any external job it is useful to stop Kraken once a certain test or state gets reached. We created a way to signal to kraken to pause the chaos or stop it completely using a signal posted to a port of your choice.
@@ -90,29 +94,29 @@ More detailed information on enabling and leveraging this feature can be found [
Monitoring the Kubernetes/OpenShift cluster to observe the impact of Kraken chaos scenarios on various components is key to find out the bottlenecks as it is important to make sure the cluster is healthy in terms if both recovery as well as performance during/after the failure has been injected. Instructions on enabling it can be found [here](docs/performance_dashboards.md).
### Scraping and storing metrics long term
Kraken supports capturing metrics for the duration of the scenarios defined in the config and indexes then into Elasticsearch to be able to store and evaluate the state of the runs long term. The indexed metrics can be visualized with the help of Grafana. It uses [Kube-burner](https://github.com/cloud-bulldozer/kube-burner) under the hood. The metrics to capture need to be defined in a metrics profile which Kraken consumes to query prometheus ( installed by default in OpenShift ) with the start and end timestamp of the run. Information on enabling and leveraging this feature can be found [here](docs/metrics.md).
### SLOs validation during and post chaos
- In addition to checking the recovery and health of the cluster and components under test, Kraken takes in a profile with the Prometheus expressions to validate and alerts, exits with a non-zero return code depending on the severity set. This feature can be used to determine pass/fail or alert on abnormalities observed in the cluster based on the metrics.
- Kraken also provides ability to check if any critical alerts are firing in the cluster post chaos and pass/fail's.
Information on enabling and leveraging this feature can be found [here](docs/SLOs_validation.md)
### Alerts
In addition to checking the recovery and health of the cluster and components under test, Kraken takes in a profile with the Prometheus expressions to validate and alerts, exits with a non-zero return code depending on the severity set. This feature can be used to determine pass/fail or alert on abnormalities observed in the cluster based on the metrics. Information on enabling and leveraging this feature can be found [here](docs/alerts.md).
### OCM / ACM integration
Kraken supports injecting faults into [Open Cluster Management (OCM)](https://open-cluster-management.io/) and [Red Hat Advanced Cluster Management for Kubernetes (ACM)](https://www.redhat.com/en/technologies/management/advanced-cluster-management) managed clusters through [ManagedCluster Scenarios](docs/managedcluster_scenarios.md).
Kraken supports injecting faults into [Open Cluster Management (OCM)](https://open-cluster-management.io/) and [Red Hat Advanced Cluster Management for Kubernetes (ACM)](https://www.krkn.com/en/technologies/management/advanced-cluster-management) managed clusters through [ManagedCluster Scenarios](docs/managedcluster_scenarios.md).
### Blogs and other useful resources
- Blog post on introduction to Kraken: https://www.openshift.com/blog/introduction-to-kraken-a-chaos-tool-for-openshift/kubernetes
- Discussion and demo on how Kraken can be leveraged to ensure OpenShift is reliable, performant and scalable: https://www.youtube.com/watch?v=s1PvupI5sD0&ab_channel=OpenShift
- Blog post emphasizing the importance of making Chaos part of Performance and Scale runs to mimic the production environments: https://www.openshift.com/blog/making-chaos-part-of-kubernetes/openshift-performance-and-scalability-tests
- Blog post on findings from Chaos test runs: https://cloud.redhat.com/blog/openshift/kubernetes-chaos-stories
- Discussion with CNCF TAG App Delivery on Krkn workflow, features and addition to CNCF sandbox: [Github](https://github.com/cncf/sandbox/issues/44), [Tracker](https://github.com/cncf/tag-app-delivery/issues/465), [recording](https://www.youtube.com/watch?v=nXQkBFK_MWc&t=722s)
- Blog post on supercharging chaos testing using AI integration in Krkn: https://www.redhat.com/en/blog/supercharging-chaos-testing-using-ai
- Blog post announcing Krkn joining CNCF Sandbox: https://www.redhat.com/en/blog/krknchaos-joining-cncf-sandbox
### Roadmap
Following is a list of enhancements that we are planning to work on adding support in Kraken. Of course any help/contributions are greatly appreciated.
- [Ability to visualize the metrics that are being captured by Kraken and stored in Elasticsearch](https://github.com/redhat-chaos/krkn/issues/124)
- Continue to improve [Chaos Testing Guide](https://cloud-bulldozer.github.io/kraken/) in terms of adding best practices, test environment recommendations and scenarios to make sure the OpenShift platform, as well the applications running on top it, are resilient and performant under chaotic conditions.
- Support for running Kraken on Kubernetes distribution - see https://github.com/redhat-chaos/krkn/issues/185, https://github.com/redhat-chaos/krkn/issues/186
- Sweet logo for Kraken - see https://github.com/redhat-chaos/krkn/issues/195
Enhancements being planned can be found in the [roadmap](ROADMAP.md).
### Contributions
@@ -125,6 +129,7 @@ Please read [this file]((CI/README.md#adding-a-test-case)) for more information
### Community
Key Members(slack_usernames/full name): paigerube14/Paige Rubendall, mffiedler/Mike Fiedler, ravielluri/Naga Ravi Chaitanya Elluri.
* [**#sig-scalability on Kubernetes Slack**](https://kubernetes.slack.com)
* [**#forum-chaos on CoreOS Slack internal to Red Hat**](https://coreos.slack.com)
Key Members(slack_usernames/full name): paigerube14/Paige Rubendall, mffiedler/Mike Fiedler, tsebasti/Tullio Sebastiani, yogi/Yogananth Subramanian, sahil/Sahil Shah, pradeep/Pradeep Surisetty and ravielluri/Naga Ravi Chaitanya Elluri.
* [**#krkn on Kubernetes Slack**](https://kubernetes.slack.com/messages/C05SFMHRWK1)
The Linux Foundation® (TLF) has registered trademarks and uses trademarks. For a list of TLF trademarks, see [Trademark Usage](https://www.linuxfoundation.org/legal/trademark-usage).

15
ROADMAP.md Normal file
View File

@@ -0,0 +1,15 @@
## Krkn Roadmap
Following are a list of enhancements that we are planning to work on adding support in Krkn. Of course any help/contributions are greatly appreciated.
- [ ] [Ability to run multiple chaos scenarios in parallel under load to mimic real world outages](https://github.com/krkn-chaos/krkn/issues/424)
- [x] [Centralized storage for chaos experiments artifacts](https://github.com/krkn-chaos/krkn/issues/423)
- [ ] [Support for causing DNS outages](https://github.com/krkn-chaos/krkn/issues/394)
- [x] [Chaos recommender](https://github.com/krkn-chaos/krkn/tree/main/utils/chaos-recommender) to suggest scenarios having probability of impacting the service under test using profiling results
- [ ] Chaos AI integration to improve and automate test coverage
- [x] [Support for pod level network traffic shaping](https://github.com/krkn-chaos/krkn/issues/393)
- [ ] [Ability to visualize the metrics that are being captured by Kraken and stored in Elasticsearch](https://github.com/krkn-chaos/krkn/issues/124)
- [ ] Support for running all the scenarios of Kraken on Kubernetes distribution - see https://github.com/krkn-chaos/krkn/issues/185, https://github.com/redhat-chaos/krkn/issues/186
- [ ] Continue to improve [Chaos Testing Guide](https://krkn-chaos.github.io/krkn) in terms of adding best practices, test environment recommendations and scenarios to make sure the OpenShift platform, as well the applications running on top it, are resilient and performant under chaotic conditions.
- [ ] [Switch documentation references to Kubernetes](https://github.com/krkn-chaos/krkn/issues/495)
- [ ] [OCP and Kubernetes functionalities segregation](https://github.com/krkn-chaos/krkn/issues/497)

View File

@@ -1,11 +0,0 @@
- expr: avg_over_time(histogram_quantile(0.99, rate(etcd_disk_wal_fsync_duration_seconds_bucket[2m]))[5m:]) > 0.01
description: 5 minutes avg. etcd fsync latency on {{$labels.pod}} higher than 10ms {{$value}}
severity: error
- expr: avg_over_time(histogram_quantile(0.99, rate(etcd_network_peer_round_trip_time_seconds_bucket[5m]))[5m:]) > 0.1
description: 5 minutes avg. etcd netowrk peer round trip on {{$labels.pod}} higher than 100ms {{$value}}
severity: info
- expr: increase(etcd_server_leader_changes_seen_total[2m]) > 0
description: etcd leader changes observed
severity: critical

90
config/alerts.yaml Normal file
View File

@@ -0,0 +1,90 @@
# etcd
- expr: avg_over_time(histogram_quantile(0.99, rate(etcd_disk_wal_fsync_duration_seconds_bucket[2m]))[10m:]) > 0.01
description: 10 minutes avg. 99th etcd fsync latency on {{$labels.pod}} higher than 10ms. {{$value}}s
severity: warning
- expr: avg_over_time(histogram_quantile(0.99, rate(etcd_disk_wal_fsync_duration_seconds_bucket[2m]))[10m:]) > 1
description: 10 minutes avg. 99th etcd fsync latency on {{$labels.pod}} higher than 1s. {{$value}}s
severity: error
- expr: avg_over_time(histogram_quantile(0.99, rate(etcd_disk_backend_commit_duration_seconds_bucket[2m]))[10m:]) > 0.03
description: 10 minutes avg. 99th etcd commit latency on {{$labels.pod}} higher than 30ms. {{$value}}s
severity: warning
- expr: rate(etcd_server_leader_changes_seen_total[2m]) > 0
description: etcd leader changes observed
severity: warning
- expr: (last_over_time(etcd_mvcc_db_total_size_in_bytes[5m]) / last_over_time(etcd_server_quota_backend_bytes[5m]))*100 > 95
description: etcd cluster database is running full.
severity: critical
- expr: (last_over_time(etcd_mvcc_db_total_size_in_use_in_bytes[5m]) / last_over_time(etcd_mvcc_db_total_size_in_bytes[5m])) < 0.5
description: etcd database size in use is less than 50% of the actual allocated storage.
severity: warning
- expr: rate(etcd_server_proposals_failed_total{job=~".*etcd.*"}[15m]) > 5
description: etcd cluster has high number of proposal failures.
severity: warning
- expr: histogram_quantile(0.99, rate(etcd_network_peer_round_trip_time_seconds_bucket{job=~".*etcd.*"}[5m])) > 0.15
description: etcd cluster member communication is slow.
severity: warning
- expr: histogram_quantile(0.99, sum(rate(grpc_server_handling_seconds_bucket{job=~".*etcd.*", grpc_method!="Defragment", grpc_type="unary"}[5m])) without(grpc_type)) > 0.15
description: etcd grpc requests are slow.
severity: critical
- expr: 100 * sum(rate(grpc_server_handled_total{job=~".*etcd.*", grpc_code=~"Unknown|FailedPrecondition|ResourceExhausted|Internal|Unavailable|DataLoss|DeadlineExceeded"}[5m])) without (grpc_type, grpc_code) / sum(rate(grpc_server_handled_total{job=~".*etcd.*"}[5m])) without (grpc_type, grpc_code) > 5
description: etcd cluster has high number of failed grpc requests.
severity: critical
- expr: etcd_server_has_leader{job=~".*etcd.*"} == 0
description: etcd cluster has no leader.
severity: warning
- expr: sum(up{job=~".*etcd.*"} == bool 1) without (instance) < ((count(up{job=~".*etcd.*"}) without (instance) + 1) / 2)
description: etcd cluster has insufficient number of members.
severity: warning
- expr: max without (endpoint) ( sum without (instance) (up{job=~".*etcd.*"} == bool 0) or count without (To) ( sum without (instance) (rate(etcd_network_peer_sent_failures_total{job=~".*etcd.*"}[120s])) > 0.01 )) > 0
description: etcd cluster members are down.
severity: warning
# API server
- expr: avg_over_time(histogram_quantile(0.99, sum(irate(apiserver_request_duration_seconds_bucket{apiserver="kube-apiserver", verb=~"POST|PUT|DELETE|PATCH", subresource!~"log|exec|portforward|attach|proxy"}[2m])) by (le, resource, verb))[10m:]) > 1
description: 10 minutes avg. 99th mutating API call latency for {{$labels.verb}}/{{$labels.resource}} higher than 1 second. {{$value}}s
severity: error
- expr: avg_over_time(histogram_quantile(0.99, sum(irate(apiserver_request_duration_seconds_bucket{apiserver="kube-apiserver", verb=~"LIST|GET", subresource!~"log|exec|portforward|attach|proxy", scope="resource"}[2m])) by (le, resource, verb, scope))[5m:]) > 1
description: 5 minutes avg. 99th read-only API call latency for {{$labels.verb}}/{{$labels.resource}} in scope {{$labels.scope}} higher than 1 second. {{$value}}s
severity: error
- expr: avg_over_time(histogram_quantile(0.99, sum(irate(apiserver_request_duration_seconds_bucket{apiserver="kube-apiserver", verb=~"LIST|GET", subresource!~"log|exec|portforward|attach|proxy", scope="namespace"}[2m])) by (le, resource, verb, scope))[5m:]) > 5
description: 5 minutes avg. 99th read-only API call latency for {{$labels.verb}}/{{$labels.resource}} in scope {{$labels.scope}} higher than 5 seconds. {{$value}}s
severity: error
- expr: avg_over_time(histogram_quantile(0.99, sum(irate(apiserver_request_duration_seconds_bucket{apiserver="kube-apiserver", verb=~"LIST|GET", subresource!~"log|exec|portforward|attach|proxy", scope="cluster"}[2m])) by (le, resource, verb, scope))[5m:]) > 30
description: 5 minutes avg. 99th read-only API call latency for {{$labels.verb}}/{{$labels.resource}} in scope {{$labels.scope}} higher than 30 seconds. {{$value}}s
severity: error
# Control plane pods
- expr: up{job=~"crio|kubelet"} == 0
description: "{{$labels.node}}/{{$labels.job}} down"
severity: warning
- expr: up{job="ovnkube-node"} == 0
description: "{{$labels.instance}}/{{$labels.pod}} {{$labels.job}} down"
severity: warning
# Service sync latency
- expr: histogram_quantile(0.99, sum(rate(kubeproxy_network_programming_duration_seconds_bucket[2m])) by (le)) > 10
description: 99th Kubeproxy network programming latency higher than 10 seconds. {{$value}}s
severity: warning
# Prometheus alerts
- expr: ALERTS{severity="critical", alertstate="firing"} > 0
description: Critical prometheus alert. {{$labels.alertname}}
severity: warning

View File

@@ -0,0 +1,101 @@
# etcd
- expr: avg_over_time(histogram_quantile(0.99, rate(etcd_disk_wal_fsync_duration_seconds_bucket[2m]))[10m:]) > 0.01
description: 10 minutes avg. 99th etcd fsync latency on {{$labels.pod}} higher than 10ms. {{$value}}s
severity: warning
- expr: avg_over_time(histogram_quantile(0.99, rate(etcd_disk_wal_fsync_duration_seconds_bucket[2m]))[10m:]) > 1
description: 10 minutes avg. 99th etcd fsync latency on {{$labels.pod}} higher than 1s. {{$value}}s
severity: error
- expr: avg_over_time(histogram_quantile(0.99, rate(etcd_disk_backend_commit_duration_seconds_bucket[2m]))[10m:]) > 0.03
description: 10 minutes avg. 99th etcd commit latency on {{$labels.pod}} higher than 30ms. {{$value}}s
severity: warning
- expr: rate(etcd_server_leader_changes_seen_total[2m]) > 0
description: etcd leader changes observed
severity: warning
- expr: (last_over_time(etcd_mvcc_db_total_size_in_bytes[5m]) / last_over_time(etcd_server_quota_backend_bytes[5m]))*100 > 95
description: etcd cluster database is running full.
severity: critical
- expr: (last_over_time(etcd_mvcc_db_total_size_in_use_in_bytes[5m]) / last_over_time(etcd_mvcc_db_total_size_in_bytes[5m])) < 0.5
description: etcd database size in use is less than 50% of the actual allocated storage.
severity: warning
- expr: rate(etcd_server_proposals_failed_total{job=~".*etcd.*"}[15m]) > 5
description: etcd cluster has high number of proposal failures.
severity: warning
- expr: histogram_quantile(0.99, rate(etcd_network_peer_round_trip_time_seconds_bucket{job=~".*etcd.*"}[5m])) > 0.15
description: etcd cluster member communication is slow.
severity: warning
- expr: histogram_quantile(0.99, sum(rate(grpc_server_handling_seconds_bucket{job=~".*etcd.*", grpc_method!="Defragment", grpc_type="unary"}[5m])) without(grpc_type)) > 0.15
description: etcd grpc requests are slow.
severity: critical
- expr: 100 * sum(rate(grpc_server_handled_total{job=~".*etcd.*", grpc_code=~"Unknown|FailedPrecondition|ResourceExhausted|Internal|Unavailable|DataLoss|DeadlineExceeded"}[5m])) without (grpc_type, grpc_code) / sum(rate(grpc_server_handled_total{job=~".*etcd.*"}[5m])) without (grpc_type, grpc_code) > 5
description: etcd cluster has high number of failed grpc requests.
severity: critical
- expr: etcd_server_has_leader{job=~".*etcd.*"} == 0
description: etcd cluster has no leader.
severity: warning
- expr: sum(up{job=~".*etcd.*"} == bool 1) without (instance) < ((count(up{job=~".*etcd.*"}) without (instance) + 1) / 2)
description: etcd cluster has insufficient number of members.
severity: warning
- expr: max without (endpoint) ( sum without (instance) (up{job=~".*etcd.*"} == bool 0) or count without (To) ( sum without (instance) (rate(etcd_network_peer_sent_failures_total{job=~".*etcd.*"}[120s])) > 0.01 )) > 0
description: etcd cluster members are down.
severity: warning
# API server
- expr: avg_over_time(histogram_quantile(0.99, sum(irate(apiserver_request_duration_seconds_bucket{apiserver="kube-apiserver", verb=~"POST|PUT|DELETE|PATCH", subresource!~"log|exec|portforward|attach|proxy"}[2m])) by (le, resource, verb))[10m:]) > 1
description: 10 minutes avg. 99th mutating API call latency for {{$labels.verb}}/{{$labels.resource}} higher than 1 second. {{$value}}s
severity: error
- expr: avg_over_time(histogram_quantile(0.99, sum(irate(apiserver_request_duration_seconds_bucket{apiserver="kube-apiserver", verb=~"LIST|GET", subresource!~"log|exec|portforward|attach|proxy", scope="resource"}[2m])) by (le, resource, verb, scope))[5m:]) > 1
description: 5 minutes avg. 99th read-only API call latency for {{$labels.verb}}/{{$labels.resource}} in scope {{$labels.scope}} higher than 1 second. {{$value}}s
severity: error
- expr: avg_over_time(histogram_quantile(0.99, sum(irate(apiserver_request_duration_seconds_bucket{apiserver="kube-apiserver", verb=~"LIST|GET", subresource!~"log|exec|portforward|attach|proxy", scope="namespace"}[2m])) by (le, resource, verb, scope))[5m:]) > 5
description: 5 minutes avg. 99th read-only API call latency for {{$labels.verb}}/{{$labels.resource}} in scope {{$labels.scope}} higher than 5 seconds. {{$value}}s
severity: error
- expr: avg_over_time(histogram_quantile(0.99, sum(irate(apiserver_request_duration_seconds_bucket{apiserver="kube-apiserver", verb=~"LIST|GET", subresource!~"log|exec|portforward|attach|proxy", scope="cluster"}[2m])) by (le, resource, verb, scope))[5m:]) > 30
description: 5 minutes avg. 99th read-only API call latency for {{$labels.verb}}/{{$labels.resource}} in scope {{$labels.scope}} higher than 30 seconds. {{$value}}s
severity: error
# Control plane pods
- expr: up{apiserver=~"kube-apiserver|openshift-apiserver"} == 0
description: "{{$labels.apiserver}} {{$labels.instance}} down"
severity: warning
- expr: up{namespace=~"openshift-etcd"} == 0
description: "{{$labels.namespace}}/{{$labels.pod}} down"
severity: warning
- expr: up{namespace=~"openshift-.*(kube-controller-manager|scheduler|controller-manager|sdn|ovn-kubernetes|dns)"} == 0
description: "{{$labels.namespace}}/{{$labels.pod}} down"
severity: warning
- expr: up{job=~"crio|kubelet"} == 0
description: "{{$labels.node}}/{{$labels.job}} down"
severity: warning
- expr: up{job="ovnkube-node"} == 0
description: "{{$labels.instance}}/{{$labels.pod}} {{$labels.job}} down"
severity: warning
# Service sync latency
- expr: histogram_quantile(0.99, sum(rate(kubeproxy_network_programming_duration_seconds_bucket[2m])) by (le)) > 10
description: 99th Kubeproxy network programming latency higher than 10 seconds. {{$value}}s
severity: warning
# Prometheus alerts
- expr: ALERTS{severity="critical", alertstate="firing"} > 0
description: Critical prometheus alert. {{$labels.alertname}}
severity: warning

View File

@@ -1,51 +1,46 @@
kraken:
distribution: openshift # Distribution can be kubernetes or openshift
distribution: kubernetes # Distribution can be kubernetes or openshift
kubeconfig_path: ~/.kube/config # Path to kubeconfig
exit_on_failure: False # Exit when a post action scenario fails
publish_kraken_status: True # Can be accessed at http://0.0.0.0:8081
signal_state: RUN # Will wait for the RUN signal when set to PAUSE before running the scenarios, refer docs/signal.md for more details
signal_address: 0.0.0.0 # Signal listening address
port: 8081 # Signal port
litmus_install: True # Installs specified version, set to False if it's already setup
litmus_version: v1.13.6 # Litmus version to install
litmus_uninstall: False # If you want to uninstall litmus if failure
litmus_uninstall_before_run: True # If you want to uninstall litmus before a new run starts
chaos_scenarios: # List of policies/chaos scenarios to load
- container_scenarios: # List of chaos pod scenarios to load
chaos_scenarios:
# List of policies/chaos scenarios to load
- arcaflow_scenarios:
- scenarios/arcaflow/cpu-hog/input.yaml
- scenarios/arcaflow/memory-hog/input.yaml
- scenarios/arcaflow/io-hog/input.yaml
- application_outages:
- scenarios/openshift/app_outage.yaml
- container_scenarios: # List of chaos pod scenarios to load
- - scenarios/openshift/container_etcd.yml
- plugin_scenarios:
- plugin_scenarios:
- scenarios/openshift/etcd.yml
- scenarios/openshift/regex_openshift_pod_kill.yml
- scenarios/openshift/vmware_node_scenarios.yml
- scenarios/openshift/network_chaos_ingress.yml
- node_scenarios: # List of chaos node scenarios to load
- scenarios/openshift/prom_kill.yml
- node_scenarios: # List of chaos node scenarios to load
- scenarios/openshift/node_scenarios_example.yml
- plugin_scenarios:
- plugin_scenarios:
- scenarios/openshift/openshift-apiserver.yml
- scenarios/openshift/openshift-kube-apiserver.yml
- time_scenarios: # List of chaos time scenarios to load
- time_scenarios: # List of chaos time scenarios to load
- scenarios/openshift/time_scenarios_example.yml
- litmus_scenarios: # List of litmus scenarios to load
- - scenarios/openshift/templates/litmus-rbac.yaml
- scenarios/openshift/node_cpu_hog_engine.yaml
- - scenarios/openshift/templates/litmus-rbac.yaml
- scenarios/openshift/node_mem_engine.yaml
- - scenarios/openshift/templates/litmus-rbac.yaml
- scenarios/openshift/node_io_engine.yaml
- cluster_shut_down_scenarios:
- cluster_shut_down_scenarios:
- - scenarios/openshift/cluster_shut_down_scenario.yml
- scenarios/openshift/post_action_shut_down.py
- namespace_scenarios:
- service_disruption_scenarios:
- - scenarios/openshift/regex_namespace.yaml
- - scenarios/openshift/ingress_namespace.yaml
- scenarios/openshift/post_action_namespace.py
- zone_outages:
- zone_outages:
- scenarios/openshift/zone_outage.yaml
- application_outages:
- scenarios/openshift/app_outage.yaml
- pvc_scenarios:
- pvc_scenarios:
- scenarios/openshift/pvc_scenario.yaml
- network_chaos:
- network_chaos:
- scenarios/openshift/network_chaos.yaml
cerberus:
@@ -56,17 +51,49 @@ cerberus:
performance_monitoring:
deploy_dashboards: False # Install a mutable grafana and load the performance dashboards. Enable this only when running on OpenShift
repo: "https://github.com/cloud-bulldozer/performance-dashboards.git"
kube_burner_binary_url: "https://github.com/cloud-bulldozer/kube-burner/releases/download/v0.9.1/kube-burner-0.9.1-Linux-x86_64.tar.gz"
capture_metrics: False
config_path: config/kube_burner.yaml # Define the Elasticsearch url and index name in this config
metrics_profile_path: config/metrics-aggregated.yaml
prometheus_url: # The prometheus url/route is automatically obtained in case of OpenShift, please set it when the distribution is Kubernetes.
prometheus_url: # The prometheus url/route is automatically obtained in case of OpenShift, please set it when the distribution is Kubernetes.
prometheus_bearer_token: # The bearer token is automatically obtained in case of OpenShift, please set it when the distribution is Kubernetes. This is needed to authenticate with prometheus.
uuid: # uuid for the run is generated by default if not set
enable_alerts: False # Runs the queries specified in the alert profile and displays the info or exits 1 when severity=error
alert_profile: config/alerts # Path to alert profile with the prometheus queries
alert_profile: config/alerts.yaml # Path or URL to alert profile with the prometheus queries
check_critical_alerts: False # When enabled will check prometheus for critical alerts firing post chaos
tunings:
wait_duration: 60 # Duration to wait between each chaos scenario
iterations: 1 # Number of times to execute the scenarios
daemon_mode: False # Iterations are set to infinity which means that the kraken will cause chaos forever
telemetry:
enabled: False # enable/disables the telemetry collection feature
api_url: https://ulnmf9xv7j.execute-api.us-west-2.amazonaws.com/production #telemetry service endpoint
username: username # telemetry service username
password: password # telemetry service password
prometheus_backup: True # enables/disables prometheus data collection
prometheus_namespace: "" # namespace where prometheus is deployed (if distribution is kubernetes)
prometheus_container_name: "" # name of the prometheus container name (if distribution is kubernetes)
prometheus_pod_name: "" # name of the prometheus pod (if distribution is kubernetes)
full_prometheus_backup: False # if is set to False only the /prometheus/wal folder will be downloaded.
backup_threads: 5 # number of telemetry download/upload threads
archive_path: /tmp # local path where the archive files will be temporarly stored
max_retries: 0 # maximum number of upload retries (if 0 will retry forever)
run_tag: '' # if set, this will be appended to the run folder in the bucket (useful to group the runs)
archive_size: 500000
telemetry_group: '' # if set will archive the telemetry in the S3 bucket on a folder named after the value, otherwise will use "default"
# the size of the prometheus data archive size in KB. The lower the size of archive is
# the higher the number of archive files will be produced and uploaded (and processed by backup_threads
# simultaneously).
# For unstable/slow connection is better to keep this value low
# increasing the number of backup_threads, in this way, on upload failure, the retry will happen only on the
# failed chunk without affecting the whole upload.
logs_backup: True
logs_filter_patterns:
- "(\\w{3}\\s\\d{1,2}\\s\\d{2}:\\d{2}:\\d{2}\\.\\d+).+" # Sep 9 11:20:36.123425532
- "kinit (\\d+/\\d+/\\d+\\s\\d{2}:\\d{2}:\\d{2})\\s+" # kinit 2023/09/15 11:20:36 log
- "(\\d{4}-\\d{2}-\\d{2}T\\d{2}:\\d{2}:\\d{2}\\.\\d+Z).+" # 2023-09-15T11:20:36.123425532Z log
oc_cli_path: /usr/bin/oc # optional, if not specified will be search in $PATH
events_backup: True # enables/disables cluster events collection
elastic:
elastic_url: "" # To track results in elasticsearch, give url to server here; will post telemetry details when url and index not blank
elastic_index: "" # Elastic search index pattern to post results to

View File

@@ -6,11 +6,7 @@ kraken:
publish_kraken_status: True # Can be accessed at http://0.0.0.0:8081
signal_state: RUN # Will wait for the RUN signal when set to PAUSE before running the scenarios, refer docs/signal.md for more details
signal_address: 0.0.0.0 # Signal listening address
litmus_install: True # Installs specified version, set to False if it's already setup
litmus_version: v1.13.6 # Litmus version to install
litmus_uninstall: False # If you want to uninstall litmus if failure
litmus_uninstall_before_run: True # If you want to uninstall litmus before a new run starts
chaos_scenarios: # List of policies/chaos scenarios to load
chaos_scenarios: # List of policies/chaos scenarios to load
- plugin_scenarios:
- scenarios/kind/scheduler.yml
- node_scenarios:
@@ -24,15 +20,11 @@ cerberus:
performance_monitoring:
deploy_dashboards: False # Install a mutable grafana and load the performance dashboards. Enable this only when running on OpenShift
repo: "https://github.com/cloud-bulldozer/performance-dashboards.git"
kube_burner_binary_url: "https://github.com/cloud-bulldozer/kube-burner/releases/download/v0.9.1/kube-burner-0.9.1-Linux-x86_64.tar.gz"
capture_metrics: False
config_path: config/kube_burner.yaml # Define the Elasticsearch url and index name in this config
metrics_profile_path: config/metrics-aggregated.yaml
prometheus_url: # The prometheus url/route is automatically obtained in case of OpenShift, please set it when the distribution is Kubernetes.
prometheus_bearer_token: # The bearer token is automatically obtained in case of OpenShift, please set it when the distribution is Kubernetes. This is needed to authenticate with prometheus.
uuid: # uuid for the run is generated by default if not set
enable_alerts: False # Runs the queries specified in the alert profile and displays the info or exits 1 when severity=error
alert_profile: config/alerts # Path to alert profile with the prometheus queries
alert_profile: config/alerts.yaml # Path to alert profile with the prometheus queries
tunings:
wait_duration: 60 # Duration to wait between each chaos scenario

View File

@@ -5,10 +5,6 @@ kraken:
port: 8081
publish_kraken_status: True # Can be accessed at http://0.0.0.0:8081
signal_state: RUN # Will wait for the RUN signal when set to PAUSE before running the scenarios, refer docs/signal.md for more details
litmus_install: True # Installs specified version, set to False if it's already setup
litmus_version: v1.13.6 # Litmus version to install
litmus_uninstall: False # If you want to uninstall litmus if failure
litmus_uninstall_before_run: True # If you want to uninstall litmus before a new run starts
chaos_scenarios: # List of policies/chaos scenarios to load
- container_scenarios: # List of chaos pod scenarios to load
- - scenarios/kube/container_dns.yml
@@ -23,16 +19,12 @@ cerberus:
performance_monitoring:
deploy_dashboards: False # Install a mutable grafana and load the performance dashboards. Enable this only when running on OpenShift
repo: "https://github.com/cloud-bulldozer/performance-dashboards.git"
kube_burner_binary_url: "https://github.com/cloud-bulldozer/kube-burner/releases/download/v0.9.1/kube-burner-0.9.1-Linux-x86_64.tar.gz"
capture_metrics: False
config_path: config/kube_burner.yaml # Define the Elasticsearch url and index name in this config
metrics_profile_path: config/metrics-aggregated.yaml
prometheus_url: # The prometheus url/route is automatically obtained in case of OpenShift, please set it when the distribution is Kubernetes.
prometheus_bearer_token: # The bearer token is automatically obtained in case of OpenShift, please set it when the distribution is Kubernetes. This is needed to authenticate with prometheus.
uuid: # uuid for the run is generated by default if not set
enable_alerts: False # Runs the queries specified in the alert profile and displays the info or exits 1 when severity=error
alert_profile: config/alerts # Path to alert profile with the prometheus queries
alert_profile: config/alerts.yaml # Path to alert profile with the prometheus queries
check_critical_alerts: False # When enabled will check prometheus for critical alerts firing post chaos after soak time for the cluster to settle down
tunings:
wait_duration: 60 # Duration to wait between each chaos scenario
iterations: 1 # Number of times to execute the scenarios

View File

@@ -6,13 +6,11 @@ kraken:
signal_state: RUN # Will wait for the RUN signal when set to PAUSE before running the scenarios, refer docs/signal.md for more details
signal_address: 0.0.0.0 # Signal listening address
port: 8081 # Signal port
litmus_version: v1.13.6 # Litmus version to install
litmus_uninstall: False # If you want to uninstall litmus if failure
litmus_uninstall_before_run: True # If you want to uninstall litmus before a new run starts
chaos_scenarios: # List of policies/chaos scenarios to load
- plugin_scenarios: # List of chaos pod scenarios to load
- scenarios/openshift/etcd.yml
- scenarios/openshift/regex_openshift_pod_kill.yml
- scenarios/openshift/prom_kill.yml
- node_scenarios: # List of chaos node scenarios to load
- scenarios/openshift/node_scenarios_example.yml
- plugin_scenarios:
@@ -20,13 +18,10 @@ kraken:
- scenarios/openshift/openshift-kube-apiserver.yml
- time_scenarios: # List of chaos time scenarios to load
- scenarios/openshift/time_scenarios_example.yml
- litmus_scenarios: # List of litmus scenarios to load
- - https://hub.litmuschaos.io/api/chaos/1.10.0?file=charts/generic/node-cpu-hog/rbac.yaml
- scenarios/openshift/node_cpu_hog_engine.yaml
- cluster_shut_down_scenarios:
- - scenarios/openshift/cluster_shut_down_scenario.yml
- scenarios/openshift/post_action_shut_down.py
- namespace_scenarios:
- service_disruption_scenarios:
- scenarios/openshift/regex_namespace.yaml
- scenarios/openshift/ingress_namespace.yaml
- zone_outages:
@@ -46,17 +41,44 @@ cerberus:
performance_monitoring:
deploy_dashboards: True # Install a mutable grafana and load the performance dashboards. Enable this only when running on OpenShift
repo: "https://github.com/cloud-bulldozer/performance-dashboards.git"
kube_burner_binary_url: "https://github.com/cloud-bulldozer/kube-burner/releases/download/v0.9.1/kube-burner-0.9.1-Linux-x86_64.tar.gz"
capture_metrics: True
config_path: config/kube_burner.yaml # Define the Elasticsearch url and index name in this config
metrics_profile_path: config/metrics-aggregated.yaml
prometheus_url: # The prometheus url/route is automatically obtained in case of OpenShift, please set it when the distribution is Kubernetes.
prometheus_bearer_token: # The bearer token is automatically obtained in case of OpenShift, please set it when the distribution is Kubernetes. This is needed to authenticate with prometheus.
uuid: # uuid for the run is generated by default if not set
enable_alerts: True # Runs the queries specified in the alert profile and displays the info or exits 1 when severity=error
alert_profile: config/alerts # Path to alert profile with the prometheus queries
alert_profile: config/alerts.yaml # Path to alert profile with the prometheus queries
tunings:
wait_duration: 60 # Duration to wait between each chaos scenario
iterations: 1 # Number of times to execute the scenarios
daemon_mode: False # Iterations are set to infinity which means that the kraken will cause chaos forever
telemetry:
enabled: False # enable/disables the telemetry collection feature
api_url: https://ulnmf9xv7j.execute-api.us-west-2.amazonaws.com/production #telemetry service endpoint
username: username # telemetry service username
password: password # telemetry service password
prometheus_backup: True # enables/disables prometheus data collection
full_prometheus_backup: False # if is set to False only the /prometheus/wal folder will be downloaded.
backup_threads: 5 # number of telemetry download/upload threads
archive_path: /tmp # local path where the archive files will be temporarly stored
max_retries: 0 # maximum number of upload retries (if 0 will retry forever)
run_tag: '' # if set, this will be appended to the run folder in the bucket (useful to group the runs)
archive_size: 500000 # the size of the prometheus data archive size in KB. The lower the size of archive is
# the higher the number of archive files will be produced and uploaded (and processed by backup_threads
# simultaneously).
# For unstable/slow connection is better to keep this value low
# increasing the number of backup_threads, in this way, on upload failure, the retry will happen only on the
# failed chunk without affecting the whole upload.
logs_backup: True
logs_filter_patterns:
- "(\\w{3}\\s\\d{1,2}\\s\\d{2}:\\d{2}:\\d{2}\\.\\d+).+" # Sep 9 11:20:36.123425532
- "kinit (\\d+/\\d+/\\d+\\s\\d{2}:\\d{2}:\\d{2})\\s+" # kinit 2023/09/15 11:20:36 log
- "(\\d{4}-\\d{2}-\\d{2}T\\d{2}:\\d{2}:\\d{2}\\.\\d+Z).+" # 2023-09-15T11:20:36.123425532Z log
oc_cli_path: /usr/bin/oc # optional, if not specified will be search in $PATH
elastic:
elastic_url: "" # To track results in elasticsearch, give url to server here; will post telemetry details when url and index not blank
elastic_index: "" # Elastic search index pattern to post results to

View File

@@ -1,15 +0,0 @@
---
global:
writeToFile: true
metricsDirectory: collected-metrics
measurements:
- name: podLatency
esIndex: kraken
indexerConfig:
enabled: true
esServers: [http://0.0.0.0:9200] # Please change this to the respective Elasticsearch in use if you haven't run the podman-compose command to setup the infrastructure containers
insecureSkipVerify: true
defaultIndex: kraken
type: elastic

View File

@@ -139,6 +139,39 @@ metrics:
- query: histogram_quantile(0.99,sum(rate(etcd_request_duration_seconds_bucket[2m])) by (le,operation,apiserver)) > 0
metricName: P99APIEtcdRequestLatency
- query: sum(grpc_server_started_total{namespace="openshift-etcd",grpc_service="etcdserverpb.Watch",grpc_type="bidi_stream"}) - sum(grpc_server_handled_total{namespace="openshift-etcd",grpc_service="etcdserverpb.Watch",grpc_type="bidi_stream"})
metricName: ActiveWatchStreams
- query: sum(grpc_server_started_total{namespace="openshift-etcd",grpc_service="etcdserverpb.Lease",grpc_type="bidi_stream"}) - sum(grpc_server_handled_total{namespace="openshift-etcd",grpc_service="etcdserverpb.Lease",grpc_type="bidi_stream"})
metricName: ActiveLeaseStreams
- query: sum(rate(etcd_debugging_snap_save_total_duration_seconds_sum{namespace="openshift-etcd"}[2m]))
metricName: snapshotSaveLatency
- query: sum(rate(etcd_server_heartbeat_send_failures_total{namespace="openshift-etcd"}[2m]))
metricName: HeartBeatFailures
- query: sum(rate(etcd_server_health_failures{namespace="openshift-etcd"}[2m]))
metricName: HealthFailures
- query: sum(rate(etcd_server_slow_apply_total{namespace="openshift-etcd"}[2m]))
metricName: SlowApplies
- query: sum(rate(etcd_server_slow_read_indexes_total{namespace="openshift-etcd"}[2m]))
metricName: SlowIndexRead
- query: sum(etcd_server_proposals_pending)
metricName: PendingProposals
- query: histogram_quantile(1.0, sum(rate(etcd_debugging_mvcc_db_compaction_pause_duration_milliseconds_bucket[1m])) by (le, instance))
metricName: CompactionMaxPause
- query: sum by (instance) (apiserver_storage_objects)
metricName: etcdTotalObjectCount
- query: topk(500, max by(resource) (apiserver_storage_objects))
metricName: etcdTopObectCount
# Cluster metrics
- query: count(kube_namespace_created)
metricName: namespaceCount

View File

@@ -0,0 +1,35 @@
application: openshift-etcd
namespace: openshift-etcd
labels: app=openshift-etcd
kubeconfig: ~/.kube/config.yaml
prometheus_endpoint: <Prometheus_Endpoint>
auth_token: <Auth_Token>
scrape_duration: 10m
chaos_library: "kraken"
log_level: INFO
json_output_file: False
json_output_folder_path:
# for output purpose only do not change if not needed
chaos_tests:
GENERIC:
- pod_failure
- container_failure
- node_failure
- zone_outage
- time_skew
- namespace_failure
- power_outage
CPU:
- node_cpu_hog
NETWORK:
- application_outage
- node_network_chaos
- pod_network_chaos
MEM:
- node_memory_hog
- pvc_disk_fill
threshold: .7
cpu_threshold: .5
mem_threshold: .5

View File

@@ -1,29 +1,27 @@
# Dockerfile for kraken
FROM quay.io/openshift/origin-tests:latest as origintests
FROM mcr.microsoft.com/azure-cli:latest as azure-cli
FROM quay.io/centos/centos:stream9
LABEL org.opencontainers.image.authors="Red Hat OpenShift Chaos Engineering"
FROM registry.access.redhat.com/ubi8/ubi:latest
ENV KUBECONFIG /root/.kube/config
# Copy OpenShift CLI, Kubernetes CLI from origin-tests image
COPY --from=origintests /usr/bin/oc /usr/bin/oc
COPY --from=origintests /usr/bin/kubectl /usr/bin/kubectl
ENV PATH=$PATH:/usr/local/bin
# Copy azure client binary from azure-cli image
COPY --from=azure-cli /usr/local/bin/az /usr/bin/az
# Install dependencies
RUN yum install epel-release -y && \
yum install -y git python39 python3-pip jq gettext && \
RUN yum install -y git python39 python3-pip jq gettext wget && \
python3.9 -m pip install -U pip && \
git clone https://github.com/redhat-chaos/krkn.git --branch v1.1.1 /root/kraken && \
git clone https://github.com/krkn-chaos/krkn.git --branch v1.5.9 /root/kraken && \
mkdir -p /root/.kube && cd /root/kraken && \
pip3.9 install -r requirements.txt
pip3.9 install -r requirements.txt && \
pip3.9 install virtualenv && \
wget https://github.com/mikefarah/yq/releases/latest/download/yq_linux_amd64 -O /usr/bin/yq && chmod +x /usr/bin/yq
# Get Kubernetes and OpenShift clients from stable releases
WORKDIR /tmp
RUN wget https://mirror.openshift.com/pub/openshift-v4/clients/ocp/stable/openshift-client-linux.tar.gz && tar -xvf openshift-client-linux.tar.gz && cp oc /usr/local/bin/oc && cp kubectl /usr/local/bin/kubectl
WORKDIR /root/kraken

View File

@@ -2,24 +2,29 @@
FROM ppc64le/centos:8
MAINTAINER Red Hat OpenShift Performance and Scale
FROM mcr.microsoft.com/azure-cli:latest as azure-cli
LABEL org.opencontainers.image.authors="Red Hat OpenShift Chaos Engineering"
ENV KUBECONFIG /root/.kube/config
ENV PATH=$PATH:/usr/local/bin
RUN curl -L -o kubernetes-client-linux-ppc64le.tar.gz https://dl.k8s.io/v1.19.0/kubernetes-client-linux-ppc64le.tar.gz \
&& tar xf kubernetes-client-linux-ppc64le.tar.gz && mv kubernetes/client/bin/kubectl /usr/bin/ && rm -rf kubernetes-client-linux-ppc64le.tar.gz
RUN curl -L -o openshift-client-linux.tar.gz https://mirror.openshift.com/pub/openshift-v4/ppc64le/clients/ocp/stable/openshift-client-linux.tar.gz \
&& tar xf openshift-client-linux.tar.gz -C /usr/bin && rm -rf openshift-client-linux.tar.gz
# Copy azure client binary from azure-cli image
COPY --from=azure-cli /usr/local/bin/az /usr/bin/az
# Install dependencies
RUN yum install epel-release -y && \
yum install -y git python36 python3-pip gcc libffi-devel python36-devel openssl-devel gcc-c++ make jq gettext && \
git clone https://github.com/redhat-chaos/krkn.git --branch main /root/kraken && \
mkdir -p /root/.kube && cd /root/kraken && \
pip3 install cryptography==3.3.2 && \
pip3 install -r requirements.txt setuptools==40.3.0 urllib3==1.25.4
RUN yum install -y git python39 python3-pip jq gettext wget && \
python3.9 -m pip install -U pip && \
git clone https://github.com/redhat-chaos/krkn.git --branch v1.5.9 /root/kraken && \
mkdir -p /root/.kube && cd /root/kraken && \
pip3.9 install -r requirements.txt && \
pip3.9 install virtualenv && \
wget https://github.com/mikefarah/yq/releases/latest/download/yq_linux_amd64 -O /usr/bin/yq && chmod +x /usr/bin/yq
# Get Kubernetes and OpenShift clients from stable releases
WORKDIR /tmp
RUN wget https://mirror.openshift.com/pub/openshift-v4/clients/ocp/stable/openshift-client-linux.tar.gz && tar -xvf openshift-client-linux.tar.gz && cp oc /usr/local/bin/oc && cp kubectl /usr/local/bin/kubectl
WORKDIR /root/kraken
ENTRYPOINT python3 run_kraken.py --config=config/config.yaml
ENTRYPOINT python3.9 run_kraken.py --config=config/config.yaml

View File

@@ -1,27 +1,20 @@
### Kraken image
Container image gets automatically built by quay.io at [Kraken image](https://quay.io/redhat-chaos/krkn).
Container image gets automatically built by quay.io at [Kraken image](https://quay.io/chaos-kubox/krkn).
### Run containerized version
Refer [instructions](https://github.com/redhat-chaos/krkn/blob/main/docs/installation.md#run-containerized-version) for information on how to run the containerized version of kraken.
### Run Custom Kraken Image
Refer to [instructions](https://github.com/redhat-chaos/krkn/blob/main/containers/build_own_image-README.md) for information on how to run a custom containerized version of kraken using podman.
### Kraken as a KubeApp
### Kraken as a KubeApp ( Unsupported and not recommended )
#### GENERAL NOTES:
@@ -50,4 +43,4 @@ To run containerized Kraken as a Kubernetes/OpenShift Deployment, follow these s
8. Create a ConfigMap named scenarios-kube-config using `kubectl create configmap scenarios-kube-config --from-file=<path_to_kraken>/scenarios/kube`
9. Create a service account to run the kraken pod `kubectl create serviceaccount useroot`.
10. In Openshift, add privileges to service account and execute `oc adm policy add-scc-to-user privileged -z useroot`.
11. Create a Job using `kubectl apply -f <path_to_kraken>/containers/kraken.yml` and monitor the status using `oc get jobs` and `oc get pods`.
11. Create a Job using `kubectl apply -f <path_to_kraken>/containers/kraken.yml` and monitor the status using `oc get jobs` and `oc get pods`.

View File

@@ -1,13 +1,13 @@
# Building your own Kraken image
1. Git clone the Kraken repository using `git clone https://github.com/openshift-scale/kraken.git`.
1. Git clone the Kraken repository using `git clone https://github.com/redhat-chaos/krkn.git`.
2. Modify the python code and yaml files to address your needs.
3. Execute `podman build -t <new_image_name>:latest .` in the containers directory within kraken to build an image from a Dockerfile.
4. Execute `podman run --detach --name <container_name> <new_image_name>:latest` to start a container based on your new image.
# Building the Kraken image on IBM Power (ppc64le)
1. Git clone the Kraken repository using `git clone https://github.com/cloud-bulldozer/kraken.git` on an IBM Power Systems server.
1. Git clone the Kraken repository using `git clone https://github.com/redhat-chaos/krkn.git` on an IBM Power Systems server.
2. Modify the python code and yaml files to address your needs.
3. Execute `podman build -t <new_image_name>:latest -f Dockerfile-ppc64le` in the containers directory within kraken to build an image from the Dockerfile for Power.
4. Execute `podman run --detach --name <container_name> <new_image_name>:latest` to start a container based on your new image.

View File

@@ -16,7 +16,7 @@ spec:
- name: kraken
securityContext:
privileged: true
image: quay.io/chaos-kubox/krkn
image: quay.io/redhat-chaos/krkn
command: ["/bin/sh", "-c"]
args: ["python3.9 run_kraken.py -c config/config.yaml"]
volumeMounts:

View File

@@ -1,18 +1,28 @@
## Alerts
## SLOs validation
Pass/fail based on metrics captured from the cluster is important in addition to checking the health status and recovery. Kraken supports alerting based on the queries defined by the user and modifies the return code of the run to determine pass/fail. It's especially useful in case of automated runs in CI where user won't be able to monitor the system. It uses [Kube-burner](https://kube-burner.readthedocs.io/en/latest/) under the hood. This feature can be enabled in the [config](https://github.com/redhat-chaos/krkn/blob/main/config/config.yaml) by setting the following:
Pass/fail based on metrics captured from the cluster is important in addition to checking the health status and recovery. Kraken supports:
### Checking for critical alerts post chaos
If enabled, the check runs at the end of each scenario ( post chaos ) and Kraken exits in case critical alerts are firing to allow user to debug. You can enable it in the config:
```
performance_monitoring:
check_critical_alerts: False # When enabled will check prometheus for critical alerts firing post chaos
```
### Validation and alerting based on the queries defined by the user during chaos
Takes PromQL queries as input and modifies the return code of the run to determine pass/fail. It's especially useful in case of automated runs in CI where user won't be able to monitor the system. This feature can be enabled in the [config](https://github.com/redhat-chaos/krkn/blob/main/config/config.yaml) by setting the following:
```
performance_monitoring:
kube_burner_binary_url: "https://github.com/cloud-bulldozer/kube-burner/releases/download/v0.9.1/kube-burner-0.9.1-Linux-x86_64.tar.gz"
prometheus_url: # The prometheus url/route is automatically obtained in case of OpenShift, please set it when the distribution is Kubernetes.
prometheus_bearer_token: # The bearer token is automatically obtained in case of OpenShift, please set it when the distribution is Kubernetes. This is needed to authenticate with prometheus.
enable_alerts: True # Runs the queries specified in the alert profile and displays the info or exits 1 when severity=error.
alert_profile: config/alerts # Path to alert profile with the prometheus queries.
alert_profile: config/alerts.yaml # Path to alert profile with the prometheus queries.
```
### Alert profile
A couple of [alert profiles](https://github.com/redhat-chaos/krkn/tree/main/config) [alerts](https://github.com/redhat-chaos/krkn/blob/main/config/alerts) are shipped by default and can be tweaked to add more queries to alert on. The following are a few alerts examples:
#### Alert profile
A couple of [alert profiles](https://github.com/redhat-chaos/krkn/tree/main/config) [alerts](https://github.com/redhat-chaos/krkn/blob/main/config/alerts.yaml) are shipped by default and can be tweaked to add more queries to alert on. User can provide a URL or path to the file in the [config](https://github.com/redhat-chaos/krkn/blob/main/config/config.yaml). The following are a few alerts examples:
```
- expr: avg_over_time(histogram_quantile(0.99, rate(etcd_disk_wal_fsync_duration_seconds_bucket[2m]))[5m:]) > 0.01

View File

@@ -0,0 +1,70 @@
## Arcaflow Scenarios
Arcaflow is a workflow engine in development which provides the ability to execute workflow steps in sequence, in parallel, repeatedly, etc. The main difference to competitors such as Netflix Conductor is the ability to run ad-hoc workflows without an infrastructure setup required.
The engine uses containers to execute plugins and runs them either locally in Docker/Podman or remotely on a Kubernetes cluster. The workflow system is strongly typed and allows for generating JSON schema and OpenAPI documents for all data formats involved.
### Available Scenarios
#### Hog scenarios:
- [CPU Hog](arcaflow_scenarios/cpu_hog.md)
- [Memory Hog](arcaflow_scenarios/memory_hog.md)
- [I/O Hog](arcaflow_scenarios/io_hog.md)
### Prequisites
Arcaflow supports three deployment technologies:
- Docker
- Podman
- Kubernetes
#### Docker
In order to run Arcaflow Scenarios with the Docker deployer, be sure that:
- Docker is correctly installed in your Operating System (to find instructions on how to install docker please refer to [Docker Documentation](https://www.docker.com/))
- The Docker daemon is running
#### Podman
The podman deployer is built around the podman CLI and doesn't need necessarily to be run along with the podman daemon.
To run Arcaflow Scenarios in your Operating system be sure that:
- podman is correctly installed in your Operating System (to find instructions on how to install podman refer to [Podman Documentation](https://podman.io/))
- the podman CLI is in your shell PATH
#### Kubernetes
The kubernetes deployer integrates directly the Kubernetes API Client and needs only a valid kubeconfig file and a reachable Kubernetes/OpenShift Cluster.
### Usage
To enable arcaflow scenarios edit the kraken config file, go to the section `kraken -> chaos_scenarios` of the yaml structure
and add a new element to the list named `arcaflow_scenarios` then add the desired scenario
pointing to the `input.yaml` file.
```
kraken:
...
chaos_scenarios:
- arcaflow_scenarios:
- scenarios/arcaflow/cpu-hog/input.yaml
```
#### input.yaml
The implemented scenarios can be found in *scenarios/arcaflow/<scenario_name>* folder.
The entrypoint of each scenario is the *input.yaml* file.
In this file there are all the options to set up the scenario accordingly to the desired target
### config.yaml
The arcaflow config file. Here you can set the arcaflow deployer and the arcaflow log level.
The supported deployers are:
- Docker
- Podman (podman daemon not needed, suggested option)
- Kubernetes
The supported log levels are:
- debug
- info
- warning
- error
### workflow.yaml
This file contains the steps that will be executed to perform the scenario against the target.
Each step is represented by a container that will be executed from the deployer and its options.
Note that we provide the scenarios as a template, but they can be manipulated to define more complex workflows.
To have more details regarding the arcaflow workflows architecture and syntax it is suggested to refer to the [Arcaflow Documentation](https://arcalot.io/arcaflow/).
This edit is no longer in quay image
Working on fix in ticket: https://issues.redhat.com/browse/CHAOS-494
This will effect all versions 4.12 and higher of OpenShift

View File

@@ -0,0 +1,19 @@
# CPU Hog
This scenario is based on the arcaflow [arcaflow-plugin-stressng](https://github.com/arcalot/arcaflow-plugin-stressng) plugin.
The purpose of this scenario is to create cpu pressure on a particular node of the Kubernetes/OpenShift cluster for a time span.
To enable this plugin add the pointer to the scenario input file `scenarios/arcaflow/cpu-hog/input.yaml` as described in the
Usage section.
This scenario takes a list of objects named `input_list` with the following properties:
- **kubeconfig :** *string* the kubeconfig needed by the deployer to deploy the sysbench plugin in the target cluster
- **namespace :** *string* the namespace where the scenario container will be deployed
**Note:** this parameter will be automatically filled by kraken if the `kubeconfig_path` property is correctly set
- **node_selector :** *key-value map* the node label that will be used as `nodeSelector` by the pod to target a specific cluster node
- **duration :** *string* stop stress test after N seconds. One can also specify the units of time in seconds, minutes, hours, days or years with the suffix s, m, h, d or y.
- **cpu_count :** *int* the number of CPU cores to be used (0 means all)
- **cpu_method :** *string* a fine-grained control of which cpu stressors to use (ackermann, cfloat etc. see [manpage](https://manpages.org/sysbench) for all the cpu_method options)
- **cpu_load_percentage :** *int* the CPU load by percentage
To perform several load tests in the same run simultaneously (eg. stress two or more nodes in the same run) add another item
to the `input_list` with the same properties (and eventually different values eg. different node_selectors
to schedule the pod on different nodes). To reduce (or increase) the parallelism change the value `parallelism` in `workload.yaml` file

View File

@@ -0,0 +1,21 @@
# I/O Hog
This scenario is based on the arcaflow [arcaflow-plugin-stressng](https://github.com/arcalot/arcaflow-plugin-stressng) plugin.
The purpose of this scenario is to create disk pressure on a particular node of the Kubernetes/OpenShift cluster for a time span.
The scenario allows to attach a node path to the pod as a `hostPath` volume.
To enable this plugin add the pointer to the scenario input file `scenarios/arcaflow/io-hog/input.yaml` as described in the
Usage section.
This scenario takes a list of objects named `input_list` with the following properties:
- **kubeconfig :** *string* the kubeconfig needed by the deployer to deploy the sysbench plugin in the target cluster
- **namespace :** *string* the namespace where the scenario container will be deployed
**Note:** this parameter will be automatically filled by kraken if the `kubeconfig_path` property is correctly set
- **node_selector :** *key-value map* the node label that will be used as `nodeSelector` by the pod to target a specific cluster node
- **duration :** *string* stop stress test after N seconds. One can also specify the units of time in seconds, minutes, hours, days or years with the suffix s, m, h, d or y.
- **target_pod_folder :** *string* the path in the pod where the volume is mounted
- **target_pod_volume :** *object* the `hostPath` volume definition in the [Kubernetes/OpenShift](https://docs.openshift.com/container-platform/3.11/install_config/persistent_storage/using_hostpath.html) format, that will be attached to the pod as a volume
- **io_write_bytes :** *string* writes N bytes for each hdd process. The size can be expressed as % of free space on the file system or in units of Bytes, KBytes, MBytes and GBytes using the suffix b, k, m or g
- **io_block_size :** *string* size of each write in bytes. Size can be from 1 byte to 4m.
To perform several load tests in the same run simultaneously (eg. stress two or more nodes in the same run) add another item
to the `input_list` with the same properties (and eventually different values eg. different node_selectors
to schedule the pod on different nodes). To reduce (or increase) the parallelism change the value `parallelism` in `workload.yaml` file

View File

@@ -0,0 +1,18 @@
# Memory Hog
This scenario is based on the arcaflow [arcaflow-plugin-stressng](https://github.com/arcalot/arcaflow-plugin-stressng) plugin.
The purpose of this scenario is to create Virtual Memory pressure on a particular node of the Kubernetes/OpenShift cluster for a time span.
To enable this plugin add the pointer to the scenario input file `scenarios/arcaflow/memory-hog/input.yaml` as described in the
Usage section.
This scenario takes a list of objects named `input_list` with the following properties:
- **kubeconfig :** *string* the kubeconfig needed by the deployer to deploy the sysbench plugin in the target cluster
- **namespace :** *string* the namespace where the scenario container will be deployed
**Note:** this parameter will be automatically filled by kraken if the `kubeconfig_path` property is correctly set
- **node_selector :** *key-value map* the node label that will be used as `nodeSelector` by the pod to target a specific cluster node
- **duration :** *string* stop stress test after N seconds. One can also specify the units of time in seconds, minutes, hours, days or years with the suffix s, m, h, d or y.
- **vm_bytes :** *string* N bytes per vm process or percentage of memory used (using the % symbol). The size can be expressed in units of Bytes, KBytes, MBytes and GBytes using the suffix b, k, m or g.
- **vm_workers :** *int* Number of VM stressors to be run (0 means 1 stressor per CPU)
To perform several load tests in the same run simultaneously (eg. stress two or more nodes in the same run) add another item
to the `input_list` with the same properties (and eventually different values eg. different node_selectors
to schedule the pod on different nodes). To reduce (or increase) the parallelism change the value `parallelism` in `workload.yaml` file

View File

@@ -1,11 +1,12 @@
Supported Cloud Providers:
* [AWS](#aws)
* [GCP](#gcp)
* [Openstack](#openstack)
* [Azure](#azure)
* [Alibaba](#alibaba)
* [VMware](#vmware)
- [AWS](#aws)
- [GCP](#gcp)
- [Openstack](#openstack)
- [Azure](#azure)
- [Alibaba](#alibaba)
- [VMware](#vmware)
- [IBMCloud](#ibmcloud)
## AWS
@@ -65,4 +66,24 @@ Set the following environment variables
3. ```export VSPHERE_PASSWORD=<vSphere_client_password>```
These are the credentials that you would normally use to access the vSphere client.
These are the credentials that you would normally use to access the vSphere client.
## IBMCloud
If no api key is set up with proper VPC resource permissions, use the following to create:
* Access group
* Service id with the following access
* With policy **VPC Infrastructure Services**
* Resources = All
* Roles:
* Editor
* Administrator
* Operator
* Viewer
* API Key
Set the following environment variables
1. ```export IBMC_URL=https://<region>.iaas.cloud.ibm.com/v1```
2. ```export IBMC_APIKEY=<ibmcloud_api_key>```

View File

@@ -1,5 +1,5 @@
#### Kubernetes/OpenShift cluster shut down scenario
Scenario to shut down all the nodes including the masters and restart them after specified duration. Cluster shut down scenario can be injected by placing the shut_down config file under cluster_shut_down_scenario option in the kraken config. Refer to [cluster_shut_down_scenario](https://github.com/redhat-chaos/krkn/blob/main/scenarios/cluster_shut_down_scenario.yml) config file.
#### Kubernetes cluster shut down scenario
Scenario to shut down all the nodes including the masters and restart them after specified duration. Cluster shut down scenario can be injected by placing the shut_down config file under cluster_shut_down_scenario option in the kraken config. Refer to [cluster_shut_down_scenario](https://github.com/krkn-chaos/krkn/blob/main/scenarios/cluster_shut_down_scenario.yml) config file.
Refer to [cloud setup](cloud_setup.md) to configure your cli properly for the cloud provider of the cluster you want to shut down.

View File

@@ -27,14 +27,6 @@ The prometheus url/route and bearer token are automatically obtained in case of
**signal_address**: Address to listen/post the signal state to
**port**: port to listen/post the signal state to
## Litmus Variables
Litmus installation specifics if you are running one of the hog scenarios. See [litmus doc](litmus_scenarios.md) for more information on these types of scenarios
**litmus_install**: Installs specified version of litmus, set to False if it's already setup
**litmus_version**: Litmus version to install
**litmus_uninstall**: If you want to uninstall litmus if failure
**litmus_uninstall_before_run**: If you want to uninstall litmus before a new run starts, True or False values
## Chaos Scenarios
**chaos_scenarios**: List of different types of chaos scenarios you want to run with paths to their specific yaml file configurations
@@ -48,7 +40,6 @@ Chaos scenario types:
- plugin_scenarios
- node_scenarios
- time_scenarios
- litmus_scenarios
- cluster_shut_down_scenarios
- namespace_scenarios
- zone_outages

View File

@@ -4,17 +4,19 @@ This can be based on the pods namespace or labels. If you know the exact object
These scenarios are in a simple yaml format that you can manipulate to run your specific tests or use the pre-existing scenarios to see how it works.
#### Example Config
The following are the components of Kubernetes/OpenShift for which a basic chaos scenario config exists today.
The following are the components of Kubernetes for which a basic chaos scenario config exists today.
```
scenarios:
- name: "<Name of scenario>"
- name: "<name of scenario>"
namespace: "<specific namespace>" # can specify "*" if you want to find in all namespaces
label_selector: "<label of pod(s)>"
container_name: "<specific container name>" # This is optional, can take out and will kill all containers in all pods found under namespace and label
pod_names: # This is optional, can take out and will select all pods with given namespace and label
- <pod_name>
retry_wait: <number of seconds to wait for container to be running again> (defaults to 120seconds)
count: <number of containers to disrupt, default=1>
action: <kill signal to run. For example 1 ( hang up ) or 9. Default is set to 1>
expected_recovery_time: <number of seconds to wait for container to be running again> (defaults to 120seconds)
```
#### Post Action
@@ -23,7 +25,7 @@ In all scenarios we do a post chaos check to wait and verify the specific compon
Here there are two options:
1. Pass a custom script in the main config scenario list that will run before the chaos and verify the output matches post chaos scenario.
See [scenarios/post_action_etcd_container.py](https://github.com/redhat-chaos/krkn/blob/main/scenarios/post_action_etcd_container.py) for an example.
See [scenarios/post_action_etcd_container.py](https://github.com/krkn-chaos/krkn/blob/main/scenarios/post_action_etcd_container.py) for an example.
```
- container_scenarios: # List of chaos pod scenarios to load.
- - scenarios/container_etcd.yml
@@ -34,5 +36,5 @@ See [scenarios/post_action_etcd_container.py](https://github.com/redhat-chaos/kr
containers that were killed as well as the namespaces and pods to verify all containers that were affected recover properly.
```
retry_wait: <seconds to wait for container to recover>
expected_recovery_time: <seconds to wait for container to recover>
```

View File

@@ -62,7 +62,7 @@ If changes go into the main repository while you're working on your code it is b
If not already configured, set the upstream url for kraken.
```
git remote add upstream https://github.com/cloud-bulldozer/kraken.git
git remote add upstream https://github.com/krkn-chaos/krkn.git
```
Rebase to upstream master branch.

View File

@@ -10,10 +10,9 @@
* [Cluster recovery checks, metrics evaluation and pass/fail criteria](#cluster-recovery-checks-metrics-evaluation-and-passfail-criteria)
* [Scenarios](#scenarios)
* [Test Environment Recommendations - how and where to run chaos tests](#test-environment-recommendations---how-and-where-to-run-chaos-tests)
* [Chaos testing in Practice within the OpenShift Organization](#chaos-testing-in-practice-within-the-OpenShift-Organization)
* [Using kraken as part of a tekton pipeline](#using-kraken-as-part-of-a-tekton-pipeline)
* [Start as a single taskrun](#start-as-a-single-taskrun)
* [Start as a pipelinerun](#start-as-a-pipelinerun)
* [Chaos testing in Practice](#chaos-testing-in-practice)
* [OpenShift oraganization](#openshift-organization)
* [startx-lab](#startx-lab)
### Introduction
@@ -49,7 +48,7 @@ Failures in production are costly. To help mitigate risk to service health, cons
### Best Practices
Now that we understand the test methodology, let us take a look at the best practices for an OpenShift cluster. On that platform there are user applications and cluster workloads that need to be designed for stability and to provide the best user experience possible:
Now that we understand the test methodology, let us take a look at the best practices for an Kubernetes cluster. On that platform there are user applications and cluster workloads that need to be designed for stability and to provide the best user experience possible:
- Alerts with appropriate severity should get fired.
- Alerts are key to identify when a component starts degrading, and can help focus the investigation effort on affected system components.
@@ -78,11 +77,11 @@ We want to look at this in terms of CPU, Memory, Disk, Throughput, Network etc.
- The controller watching the component should recognize a failure as soon as possible. The component needs to have minimal initialization time to avoid extended downtime or overloading the replicas if it is a highly available configuration. The cause of failure can be because of issues with the infrastructure on top of which it is running, application failures, or because of service failures that it depends on.
- High Availability deployment strategy.
- There should be multiple replicas ( both OpenShift and application control planes ) running preferably in different availability zones to survive outages while still serving the user/system requests. Avoid single points of failure.
- There should be multiple replicas ( both Kubernetes and application control planes ) running preferably in different availability zones to survive outages while still serving the user/system requests. Avoid single points of failure.
- Backed by persistent storage
- It is important to have the system/application backed by persistent storage. This is especially important in cases where the application is a database or a stateful application given that a node, pod, or container failure will wipe off the data.
- There should be fallback routes to the backend in case of using CDN, for example, Akamai in case of console.redhat.com - a managed service deployed on top of OpenShift dedicated:
- There should be fallback routes to the backend in case of using CDN, for example, Akamai in case of console.redhat.com - a managed service deployed on top of Kubernetes dedicated:
- Content delivery networks (CDNs) are commonly used to host resources such as images, JavaScript files, and CSS. The average web page is nearly 2 MB in size, and offloading heavy resources to third-parties is extremely effective for reducing backend server traffic and latency. However, this makes each CDN an additional point of failure for every site that relies on it. If the CDN fails, its customers could also fail.
- To test how the application reacts to failures, drop all network traffic between the system and CDN. The application should still serve the content to the user irrespective of the failure.
@@ -93,10 +92,10 @@ We want to look at this in terms of CPU, Memory, Disk, Throughput, Network etc.
### Tooling
Now that we looked at the best practices, In this section, we will go through how [Kraken](https://github.com/redhat-chaos/krkn) - a chaos testing framework can help test the resilience of OpenShift and make sure the applications and services are following the best practices.
Now that we looked at the best practices, In this section, we will go through how [Kraken](https://github.com/redhat-chaos/krkn) - a chaos testing framework can help test the resilience of Kubernetes and make sure the applications and services are following the best practices.
#### Workflow
Let us start by understanding the workflow of kraken: the user will start by running kraken by pointing to a specific OpenShift cluster using kubeconfig to be able to talk to the platform on top of which the OpenShift cluster is hosted. This can be done by either the oc/kubectl API or the cloud API. Based on the configuration of kraken, it will inject specific chaos scenarios as shown below, talk to [Cerberus](https://github.com/redhat-chaos/cerberus) to get the go/no-go signal representing the overall health of the cluster ( optional - can be turned off ), scrapes metrics from in-cluster prometheus given a metrics profile with the promql queries and stores them long term in Elasticsearch configured ( optional - can be turned off ), evaluates the promql expressions specified in the alerts profile ( optional - can be turned off ) and aggregated everything to set the pass/fail i.e. exits 0 or 1. More about the metrics collection, cerberus and metrics evaluation can be found in the next section.
Let us start by understanding the workflow of kraken: the user will start by running kraken by pointing to a specific Kubernetes cluster using kubeconfig to be able to talk to the platform on top of which the Kubernetes cluster is hosted. This can be done by either the oc/kubectl API or the cloud API. Based on the configuration of kraken, it will inject specific chaos scenarios as shown below, talk to [Cerberus](https://github.com/redhat-chaos/cerberus) to get the go/no-go signal representing the overall health of the cluster ( optional - can be turned off ), scrapes metrics from in-cluster prometheus given a metrics profile with the promql queries and stores them long term in Elasticsearch configured ( optional - can be turned off ), evaluates the promql expressions specified in the alerts profile ( optional - can be turned off ) and aggregated everything to set the pass/fail i.e. exits 0 or 1. More about the metrics collection, cerberus and metrics evaluation can be found in the next section.
![Kraken workflow](../media/kraken-workflow.png)
@@ -113,15 +112,15 @@ If the monitoring tool, cerberus is enabled it will consume the signal and conti
### Scenarios
Let us take a look at how to run the chaos scenarios on your OpenShift clusters using Kraken-hub - a lightweight wrapper around Kraken to ease the runs by providing the ability to run them by just running container images using podman with parameters set as environment variables. This eliminates the need to carry around and edit configuration files and makes it easy for any CI framework integration. Here are the scenarios supported:
Let us take a look at how to run the chaos scenarios on your Kubernetes clusters using Kraken-hub - a lightweight wrapper around Kraken to ease the runs by providing the ability to run them by just running container images using podman with parameters set as environment variables. This eliminates the need to carry around and edit configuration files and makes it easy for any CI framework integration. Here are the scenarios supported:
- Pod Scenarios ([Documentation](https://github.com/redhat-chaos/krkn-hub/blob/main/docs/pod-scenarios.md))
- Disrupts OpenShift/Kubernetes and applications deployed as pods:
- Disrupts Kubernetes/Kubernetes and applications deployed as pods:
- Helps understand the availability of the application, the initialization timing and recovery status.
- [Demo](https://asciinema.org/a/452351?speed=3&theme=solarized-dark)
- Container Scenarios ([Documentation](https://github.com/redhat-chaos/krkn-hub/blob/main/docs/container-scenarios.md))
- Disrupts OpenShift/Kubernetes and applications deployed as containers running as part of a pod(s) using a specified kill signal to mimic failures:
- Disrupts Kubernetes/Kubernetes and applications deployed as containers running as part of a pod(s) using a specified kill signal to mimic failures:
- Helps understand the impact and recovery timing when the program/process running in the containers are disrupted - hangs, paused, killed etc., using various kill signals, i.e. SIGHUP, SIGTERM, SIGKILL etc.
- [Demo](https://asciinema.org/a/BXqs9JSGDSEKcydTIJ5LpPZBM?speed=3&theme=solarized-dark)
@@ -135,8 +134,8 @@ Let us take a look at how to run the chaos scenarios on your OpenShift clusters
- [Demo](https://asciinema.org/a/ANZY7HhPdWTNaWt4xMFanF6Q5)
- Zone Outages ([Documentation](https://github.com/redhat-chaos/krkn-hub/blob/main/docs/zone-outages.md))
- Creates outage of availability zone(s) in a targeted region in the public cloud where the OpenShift cluster is running by tweaking the network acl of the zone to simulate the failure, and that in turn will stop both ingress and egress traffic from all nodes in a particular zone for the specified duration and reverts it back to the previous state.
- Helps understand the impact on both Kubernetes/OpenShift control plane as well as applications and services running on the worker nodes in that zone.
- Creates outage of availability zone(s) in a targeted region in the public cloud where the Kubernetes cluster is running by tweaking the network acl of the zone to simulate the failure, and that in turn will stop both ingress and egress traffic from all nodes in a particular zone for the specified duration and reverts it back to the previous state.
- Helps understand the impact on both Kubernetes/Kubernetes control plane as well as applications and services running on the worker nodes in that zone.
- Currently, only set up for AWS cloud platform: 1 VPC and multiples subnets within the VPC can be specified.
- [Demo](https://asciinema.org/a/452672?speed=3&theme=solarized-dark)
@@ -156,7 +155,6 @@ Let us take a look at how to run the chaos scenarios on your OpenShift clusters
- Helps understand if the application/system components have reserved resources to not get disrupted because of rogue applications, or get performance throttled.
- CPU Hog ([Documentation](https://github.com/redhat-chaos/krkn-hub/blob/main/docs/node-cpu-hog.md), [Demo](https://asciinema.org/a/452762))
- Memory Hog ([Documentation](https://github.com/redhat-chaos/krkn-hub/blob/main/docs/node-memory-hog.md), [Demo](https://asciinema.org/a/452742?speed=3&theme=solarized-dark))
- IO Hog ([Documentation](https://github.com/redhat-chaos/krkn-hub/blob/main/docs/node-io-hog.md))
- Time Skewing ([Documentation](https://github.com/redhat-chaos/krkn-hub/blob/main/docs/time-scenarios.md))
- Manipulate the system time and/or date of specific pods/nodes.
@@ -202,7 +200,7 @@ Let us take a look at few recommendations on how and where to run the chaos test
- Enable Observability:
- Chaos Engineering Without Observability ... Is Just Chaos.
- Make sure to have logging and monitoring installed on the cluster to help with understanding the behaviour as to why it is happening. In case of running the tests in the CI where it is not humanly possible to monitor the cluster all the time, it is recommended to leverage Cerberus to capture the state during the runs and metrics collection in Kraken to store metrics long term even after the cluster is gone.
- Kraken ships with dashboards that will help understand API, Etcd and OpenShift cluster level stats and performance metrics.
- Kraken ships with dashboards that will help understand API, Etcd and Kubernetes cluster level stats and performance metrics.
- Pay attention to Prometheus alerts. Check if they are firing as expected.
- Run multiple chaos tests at once to mimic the production outages:
@@ -210,8 +208,9 @@ Let us take a look at few recommendations on how and where to run the chaos test
- You might have existing test cases, be it related to Performance, Scalability or QE. Run the chaos in the background during the test runs to observe the impact. Signaling feature in Kraken can help with coordinating the chaos runs i.e., start, stop, pause the scenarios based on the state of the other test jobs.
#### Chaos testing in Practice within the OpenShift Organization
#### Chaos testing in Practice
##### OpenShift organization
Within the OpenShift organization we use kraken to perform chaos testing throughout a release before the code is available to customers.
1. We execute kraken during our regression test suite.
@@ -230,7 +229,14 @@ Within the OpenShift organization we use kraken to perform chaos testing through
3. We are starting to add in test cases that perform chaos testing during an upgrade (not many iterations of this have been completed).
### Using kraken as part of a tekton pipeline
##### startx-lab
**NOTE**: Requests for enhancements and any issues need to be filed at the mentioned links given that they are not natively supported in Kraken.
The following content covers the implementation details around how Startx is leveraging Kraken:
* Using kraken as part of a tekton pipeline
You can find on [artifacthub.io](https://artifacthub.io/packages/search?kind=7&ts_query_web=kraken) the
[kraken-scenario](https://artifacthub.io/packages/tekton-task/startx-tekton-catalog/kraken-scenario) `tekton-task`
@@ -258,14 +264,47 @@ to reflect your cluster configuration. Refer to the [kraken configuration](https
and [configuration examples](https://github.com/startxfr/tekton-catalog/blob/stable/task/kraken-scenario/0.1/samples/)
for details on how to configure theses resources.
#### Start as a single taskrun
* Start as a single taskrun
```bash
oc apply -f https://github.com/startxfr/tekton-catalog/raw/stable/task/kraken-scenario/0.1/samples/taskrun.yaml
```
#### Start as a pipelinerun
* Start as a pipelinerun
```yaml
oc apply -f https://github.com/startxfr/tekton-catalog/raw/stable/task/kraken-scenario/0.1/samples/pipelinerun.yaml
```
* Deploying kraken using a helm-chart
You can find on [artifacthub.io](https://artifacthub.io/packages/search?kind=0&ts_query_web=kraken) the
[chaos-kraken](https://artifacthub.io/packages/helm/startx/chaos-kraken) `helm-chart`
which can be used to deploy a kraken chaos scenarios.
Default configuration create the following resources :
- 1 project named **chaos-kraken**
- 1 scc with privileged context for kraken deployment
- 1 configmap with kraken 21 generic scenarios, various scripts and configuration
- 1 configmap with kubeconfig of the targeted cluster
- 1 job named kraken-test-xxx
- 1 service to the kraken pods
- 1 route to the kraken service
```bash
# Install the startx helm repository
helm repo add startx https://startxfr.github.io/helm-repository/packages/
# Install the kraken project
helm install --set project.enabled=true chaos-kraken-project startx/chaos-kraken
# Deploy the kraken instance
helm install \
--set kraken.enabled=true \
--set kraken.aws.credentials.region="eu-west-3" \
--set kraken.aws.credentials.key_id="AKIAXXXXXXXXXXXXXXXX" \
--set kraken.aws.credentials.secret="xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx" \
--set kraken.kubeconfig.token.server="https://api.mycluster:6443" \
--set kraken.kubeconfig.token.token="sha256~XXXXXXXXXX_PUT_YOUR_TOKEN_HERE_XXXXXXXXXXXX" \
-n chaos-kraken \
chaos-kraken-instance startx/chaos-kraken
```

View File

@@ -3,21 +3,25 @@
The following ways are supported to run Kraken:
- Standalone python program through Git.
- Containerized version using either Podman or Docker as the runtime.
- Kubernetes or OpenShift deployment.
- Using chaos-kraken helm chart.
- Containerized version using either Podman or Docker as the runtime via [Krkn-hub](https://github.com/krkn-chaos/krkn-hub)
- Kubernetes or OpenShift deployment ( unsupported )
**NOTE**: It is recommended to run Kraken external to the cluster ( Standalone or Containerized ) hitting the Kubernetes/OpenShift API as running it internal to the cluster might be disruptive to itself and also might not report back the results if the chaos leads to cluster's API server instability.
**NOTE**: To run Kraken on Power (ppc64le) architecture, build and run a containerized version by following the
instructions given [here](https://github.com/redhat-chaos/krkn/blob/main/containers/build_own_image-README.md).
instructions given [here](https://github.com/krkn-chaos/krkn/blob/main/containers/build_own_image-README.md).
**NOTE**: Helper functions for interactions in Krkn are part of [krkn-lib](https://github.com/redhat-chaos/krkn-lib).
Please feel free to reuse and expand them as you see fit when adding a new scenario or expanding
the capabilities of the current supported scenarios.
### Git
#### Clone the repository
Pick the latest stable release to install [here](https://github.com/redhat-chaos/krkn/releases).
Pick the latest stable release to install [here](https://github.com/krkn-chaos/krkn/releases).
```
$ git clone https://github.com/redhat-chaos/krkn.git --branch <release version>
$ git clone https://github.com/krkn-chaos/krkn.git --branch <release version>
$ cd kraken
```
@@ -36,62 +40,15 @@ $ python3.9 run_kraken.py --config <config_file_location>
```
### Run containerized version
Assuming that the latest docker ( 17.05 or greater with multi-build support ) is installed on the host, run:
```
$ docker pull quay.io/chaos-kubox/krkn:latest
$ docker run --name=kraken --net=host -v <path_to_kubeconfig>:/root/.kube/config:Z -v <path_to_kraken_config>:/root/kraken/config/config.yaml:Z -d quay.io/chaos-kubox/krkn:latest
$ docker run --name=kraken --net=host -v <path_to_kubeconfig>:/root/.kube/config:Z -v <path_to_kraken_config>:/root/kraken/config/config.yaml:Z -v <path_to_scenarios_directory>:/root/kraken/scenarios:Z -d quay.io/chaos-kubox/krkn:latest #custom or tweaked scenario configs
$ docker logs -f kraken
```
[Krkn-hub](https://github.com/krkn-chaos/krkn-hub) is a wrapper that allows running Krkn chaos scenarios via podman or docker runtime with scenario parameters/configuration defined as environment variables.
Similarly, podman can be used to achieve the same:
```
$ podman pull quay.io/chaos-kubox/krkn
$ podman run --name=kraken --net=host -v <path_to_kubeconfig>:/root/.kube/config:Z -v <path_to_kraken_config>:/root/kraken/config/config.yaml:Z -d quay.io/chaos-kubox/krkn:latest
$ podman run --name=kraken --net=host -v <path_to_kubeconfig>:/root/.kube/config:Z -v <path_to_kraken_config>:/root/kraken/config/config.yaml:Z -v <path_to_scenarios_directory>:/root/kraken/scenarios:Z -d quay.io/chaos-kubox/krkn:latest #custom or tweaked scenario configs
$ podman logs -f kraken
```
If you want to build your own kraken image see [here](https://github.com/redhat-chaos/krkn/blob/main/containers/build_own_image-README.md)
Refer [instructions](https://github.com/krkn-chaos/krkn-hub#supported-chaos-scenarios) to get started.
### Run Kraken as a Kubernetes deployment
Refer [Instructions](https://github.com/redhat-chaos/krkn/blob/main/containers/README.md) on how to deploy and run Kraken as a Kubernetes/OpenShift deployment.
### Run Kraken as a Kubernetes deployment ( unsupported option - standalone or containerized deployers are recommended )
Refer [Instructions](https://github.com/krkn-chaos/krkn/blob/main/containers/README.md) on how to deploy and run Kraken as a Kubernetes/OpenShift deployment.
### Deploying kraken using a helm-chart
You can find on [artifacthub.io](https://artifacthub.io/packages/search?kind=0&ts_query_web=kraken) the
[chaos-kraken](https://artifacthub.io/packages/helm/startx/chaos-kraken) `helm-chart`
which can be used to deploy a kraken chaos scenarios.
Default configuration create the following resources :
- 1 project named **chaos-kraken**
- 1 scc with privileged context for kraken deployment
- 1 configmap with kraken 21 generic scenarios, various scripts and configuration
- 1 configmap with kubeconfig of the targeted cluster
- 1 job named kraken-test-xxx
- 1 service to the kraken pods
- 1 route to the kraken service
```bash
# Install the startx helm repository
helm repo add startx https://startxfr.github.io/helm-repository/packages/
# Install the kraken project
helm install --set project.enabled=true chaos-kraken-project startx/chaos-kraken
# Deploy the kraken instance
helm install \
--set kraken.enabled=true \
--set kraken.aws.credentials.region="eu-west-3" \
--set kraken.aws.credentials.key_id="AKIAXXXXXXXXXXXXXXXX" \
--set kraken.aws.credentials.secret="xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx" \
--set kraken.kubeconfig.token.server="https://api.mycluster:6443" \
--set kraken.kubeconfig.token.token="sha256~XXXXXXXXXX_PUT_YOUR_TOKEN_HERE_XXXXXXXXXXXX" \
-n chaos-kraken \
chaos-kraken-instance startx/chaos-kraken
```
Refer to the [chaos-kraken chart manpage](https://artifacthub.io/packages/helm/startx/chaos-kraken)
and especially the [kraken configuration values](https://artifacthub.io/packages/helm/startx/chaos-kraken#chaos-kraken-values-dictionary)
for details on how to configure this chart.

View File

@@ -1,41 +0,0 @@
### Litmus Scenarios
Kraken consumes [Litmus](https://github.com/litmuschaos/litmus) under the hood for some scenarios
Official Litmus documentation and specifics of Litmus resources can be found [here](https://docs.litmuschaos.io/docs/next/getstarted/)
#### Litmus Chaos Custom Resources
There are 3 custom resources that are created during each Litmus scenario. Below is a description of the resources:
* ChaosEngine: A resource to link a Kubernetes application or Kubernetes node to a ChaosExperiment. ChaosEngine is watched by Litmus' Chaos-Operator which then invokes Chaos-Experiments.
* ChaosExperiment: A resource to group the configuration parameters of a chaos experiment. ChaosExperiment CRs are created by the operator when experiments are invoked by ChaosEngine.
* ChaosResult : A resource to hold the results of a chaos-experiment. The Chaos-exporter reads the results and exports the metrics into a configured Prometheus server.
### Understanding Litmus Scenarios
To run Litmus scenarios we need to apply 3 different resources/yaml files to our cluster.
1. **Chaos experiments** contain the actual chaos details of a scenario.
i. This is installed automatically by Kraken (does not need to be specified in kraken scenario configuration).
2. **Service Account**: should be created to allow chaosengine to run experiments in your application namespace. Usually it sets just enough permissions to a specific namespace to be able to run the experiment properly.
i. This can be defined using either a link to a yaml file or a downloaded file in the scenarios' folder.
3. **Chaos Engine** connects the application instance to a Chaos Experiment. This is where you define the specifics of your scenario; i.e.: the node or pod name you want to cause chaos within.
i. This is a downloaded yaml file in the scenarios' folder. A full list of scenarios can be found [here](https://hub.litmuschaos.io/)
**NOTE**: By default, all chaos experiments will be installed based on the version you give in the config file.
Adding a new Litmus based scenario is as simple as adding references to 2 new yaml files (the Service Account and Chaos engine files for your scenario ) in the Kraken config.
### Supported scenarios
The following are the start of scenarios for which a chaos scenario config exists today.
Scenario | Description | Working
------------------------ |-----------------------------------------------------------------------------------------| ------------------------- |
[Node CPU Hog](https://github.com/redhat-chaos/krkn/blob/main/scenarios/node_cpu_hog_engine.yaml) | Chaos scenario that hogs up the CPU on a defined node for a specific amount of time. | :heavy_check_mark: |
[Node Memory Hog](https://github.com/redhat-chaos/krkn/blob/main/scenarios/node_mem_engine.yaml) | Chaos scenario that hogs up the memory on a defined node for a specific amount of time. | :heavy_check_mark: |
[Node IO Hog](https://github.com/redhat-chaos/krkn/blob/main/scenarios/node_io_engine.yaml) | Chaos scenario that hogs up the IO on a defined node for a specific amount of time. | :heavy_check_mark: |

View File

@@ -1,51 +0,0 @@
## Scraping and storing metrics for the run
There are cases where the state of the cluster and metrics on the cluster during the chaos test run need to be stored long term to review after the cluster is terminated, for example CI and automation test runs. To help with this, Kraken supports capturing metrics for the duration of the scenarios defined in the config and indexes them into Elasticsearch. The indexed metrics can be visualized with the help of Grafana.
It uses [Kube-burner](https://github.com/cloud-bulldozer/kube-burner) under the hood. The metrics to capture need to be defined in a metrics profile which Kraken consumes to query prometheus ( installed by default in OpenShift ) with the start and end timestamp of the run. Each run has a unique identifier ( uuid ) and all the metrics/documents in Elasticsearch will be associated with it. The uuid is generated automatically if not set in the config. This feature can be enabled in the [config](https://github.com/redhat-chaos/krkn/blob/main/config/config.yaml) by setting the following:
```
performance_monitoring:
kube_burner_binary_url: "https://github.com/cloud-bulldozer/kube-burner/releases/download/v0.9.1/kube-burner-0.9.1-Linux-x86_64.tar.gz"
capture_metrics: True
config_path: config/kube_burner.yaml # Define the Elasticsearch url and index name in this config.
metrics_profile_path: config/metrics-aggregated.yaml
prometheus_url: # The prometheus url/route is automatically obtained in case of OpenShift, please set it when the distribution is Kubernetes.
prometheus_bearer_token: # The bearer token is automatically obtained in case of OpenShift, please set it when the distribution is Kubernetes. This is needed to authenticate with prometheus.
uuid: # uuid for the run is generated by default if not set.
```
### Metrics profile
A couple of [metric profiles](https://github.com/redhat-chaos/krkn/tree/main/config), [metrics.yaml](https://github.com/redhat-chaos/krkn/blob/main/config/metrics.yaml), and [metrics-aggregated.yaml](https://github.com/redhat-chaos/krkn/blob/main/config/metrics-aggregated.yaml) are shipped by default and can be tweaked to add more metrics to capture during the run. The following are the API server metrics for example:
```
metrics:
# API server
- query: histogram_quantile(0.99, sum(rate(apiserver_request_duration_seconds_bucket{apiserver="kube-apiserver", verb!~"WATCH", subresource!="log"}[2m])) by (verb,resource,subresource,instance,le)) > 0
metricName: API99thLatency
- query: sum(irate(apiserver_request_total{apiserver="kube-apiserver",verb!="WATCH",subresource!="log"}[2m])) by (verb,instance,resource,code) > 0
metricName: APIRequestRate
- query: sum(apiserver_current_inflight_requests{}) by (request_kind) > 0
metricName: APIInflightRequests
```
### Indexing
Define the Elasticsearch and index to store the metrics/documents in the kube_burner config:
```
global:
writeToFile: true
metricsDirectory: collected-metrics
measurements:
- name: podLatency
esIndex: kube-burner
indexerConfig:
enabled: true
esServers: [https://elastic.example.com:9200]
insecureSkipVerify: true
defaultIndex: kraken
type: elastic
```

View File

@@ -12,9 +12,9 @@ network_chaos: # Scenario to create an outage
- "ens5" # Interface name would be the Kernel host network interface name.
execution: serial|parallel # Execute each of the egress options as a single scenario(parallel) or as separate scenario(serial).
egress:
latency: 50ms
loss: 0.02 # percentage
bandwidth: 100mbit
latency: 500ms
loss: 50% # percentage
bandwidth: 10mbit
```
##### Sample scenario config for ingress traffic shaping (using a plugin)
@@ -30,9 +30,9 @@ network_chaos: # Scenario to create an outage
kubeconfig_path: ~/.kube/config # Path to kubernetes config file. If not specified, it defaults to ~/.kube/config
execution_type: parallel # Execute each of the ingress options as a single scenario(parallel) or as separate scenario(serial).
network_params:
latency: 50ms
loss: '0.02'
bandwidth: 100mbit
latency: 500ms
loss: '50%'
bandwidth: 10mbit
wait_duration: 120
test_duration: 60
'''

View File

@@ -76,6 +76,42 @@ How to set up Alibaba cli to run node scenarios is defined [here](cloud_setup.md
#### VMware
How to set up VMware vSphere to run node scenarios is defined [here](cloud_setup.md#vmware)
This cloud type uses a different configuration style, see actions below and [example config file](../scenarios/openshift/vmware_node_scenarios.yml)
*vmware-node-terminate, vmware-node-reboot, vmware-node-stop, vmware-node-start*
#### IBMCloud
How to set up IBMCloud to run node scenarios is defined [here](cloud_setup.md#ibmcloud)
This cloud type uses a different configuration style, see actions below and [example config file](../scenarios/openshift/ibmcloud_node_scenarios.yml)
*ibmcloud-node-terminate, ibmcloud-node-reboot, ibmcloud-node-stop, ibmcloud-node-start
*
#### IBMCloud and Vmware example
```
- id: ibmcloud-node-stop
config:
name: "<node_name>"
label_selector: "node-role.kubernetes.io/worker" # When node_name is not specified, a node with matching label_selector is selected for node chaos scenario injection
runs: 1 # Number of times to inject each scenario under actions (will perform on same node each time)
instance_count: 1 # Number of nodes to perform action/select that match the label selector
timeout: 30 # Duration to wait for completion of node scenario injection
skip_openshift_checks: False # Set to True if you don't want to wait for the status of the nodes to change on OpenShift before passing the scenario
- id: ibmcloud-node-start
config:
name: "<node_name>" #Same name as before
label_selector: "node-role.kubernetes.io/worker" # When node_name is not specified, a node with matching label_selector is selected for node chaos scenario injection
runs: 1 # Number of times to inject each scenario under actions (will perform on same node each time)
instance_count: 1 # Number of nodes to perform action/select that match the label selector
timeout: 30 # Duration to wait for completion of node scenario injection
skip_openshift_checks: False # Set to True if you don't want to wait for the status of the nodes to change on OpenShift before passing the scenario
```
#### General

View File

@@ -0,0 +1,46 @@
## Pod network Scenarios
### Pod outage
Scenario to block the traffic ( Ingress/Egress ) of a pod matching the labels for the specified duration of time to understand the behavior of the service/other services which depend on it during downtime. This helps with planning the requirements accordingly, be it improving the timeouts or tweaking the alerts etc.
With the current network policies, it is not possible to explicitly block ports which are enabled by allowed network policy rule. This chaos scenario addresses this issue by using OVS flow rules to block ports related to the pod. It supports OpenShiftSDN and OVNKubernetes based networks.
##### Sample scenario config (using a plugin)
```
- id: pod_network_outage
config:
namespace: openshift-console # Required - Namespace of the pod to which filter need to be applied
direction: # Optioinal - List of directions to apply filters
- ingress # Blocks ingress traffic, Default both egress and ingress
ingress_ports: # Optional - List of ports to block traffic on
- 8443 # Blocks 8443, Default [], i.e. all ports.
label_selector: 'component=ui' # Blocks access to openshift console
```
### Pod Network shaping
Scenario to introduce network latency, packet loss, and bandwidth restriction in the Pod's network interface. The purpose of this scenario is to observe faults caused by random variations in the network.
##### Sample scenario config for egress traffic shaping (using plugin)
```
- id: pod_egress_shaping
config:
namespace: openshift-console # Required - Namespace of the pod to which filter need to be applied.
label_selector: 'component=ui' # Applies traffic shaping to access openshift console.
network_params:
latency: 500ms # Add 500ms latency to egress traffic from the pod.
```
##### Sample scenario config for ingress traffic shaping (using plugin)
```
- id: pod_ingress_shaping
config:
namespace: openshift-console # Required - Namespace of the pod to which filter need to be applied.
label_selector: 'component=ui' # Applies traffic shaping to access openshift console.
network_params:
latency: 500ms # Add 500ms latency to egress traffic from the pod.
```
##### Steps
- Pick the pods to introduce the network anomaly either from label_selector or pod_name.
- Identify the pod interface name on the node.
- Set traffic shaping config on pod's interface using tc and netem.
- Wait for the duration time.
- Remove traffic shaping config on pod's interface.
- Remove the job that spawned the pod.

View File

@@ -1,6 +1,6 @@
### Delete Namespace Scenarios
### Service Disruption Scenarios (Previously Delete Namespace Scenario)
Using this type of scenario configuration one is able to delete a specific namespace, or a namespace matching a certain regex string.
Using this type of scenario configuration one is able to delete crucial objects in a specific namespace, or a namespace matching a certain regex string.
Configuration Options:
@@ -16,7 +16,7 @@ Set to '^.*$' and label_selector to "" to randomly select any namespace in your
**sleep:** Number of seconds to wait between each iteration/count of killing namespaces. Defaults to 10 seconds if not set
Refer to [namespace_scenarios_example](https://github.com/redhat-chaos/krkn/blob/main/scenarios/regex_namespace.yaml) config file.
Refer to [namespace_scenarios_example](https://github.com/krkn-chaos/krkn/blob/main/scenarios/regex_namespace.yaml) config file.
```
scenarios:
@@ -27,12 +27,20 @@ scenarios:
sleep: 15
```
**NOTE:** Many openshift namespaces have finalizers built that protect the namespace from being fully deleted: see documentation [here](https://kubernetes.io/blog/2021/05/14/using-finalizers-to-control-deletion/).
The namespaces that do have finalizers enabled will be in left in a terminating state but all the pods running on that namespace will get deleted.
### Steps
This scenario will select a namespace (or multiple) dependent on the configuration and will kill all of the below object types in that namespace and will wait for them to be Running in the post action
1. Services
2. Daemonsets
3. Statefulsets
4. Replicasets
5. Deployments
#### Post Action
In all scenarios we do a post chaos check to wait and verify the specific component.
We do a post chaos check to wait and verify the specific objects in each namespace are Ready
Here there are two options:
@@ -47,8 +55,8 @@ See [scenarios/post_action_namespace.py](https://github.com/cloud-bulldozer/krak
```
2. Allow kraken to wait and check the killed namespaces become 'Active' again. Kraken keeps a list of the specific
namespaces that were killed to verify all that were affected recover properly.
1. Allow kraken to wait and check all killed objects in the namespaces become 'Running' again. Kraken keeps a list of the specific
objects in namespaces that were killed to verify all that were affected recover properly.
```
wait_time: <seconds to wait for namespace to recover>

View File

@@ -16,7 +16,7 @@ Configuration Options:
**object_name:** List of the names of pods or nodes you want to skew.
Refer to [time_scenarios_example](https://github.com/redhat-chaos/krkn/blob/main/scenarios/time_scenarios_example.yml) config file.
Refer to [time_scenarios_example](https://github.com/krkn-chaos/krkn/blob/main/scenarios/time_scenarios_example.yml) config file.
```
time_scenarios:

View File

@@ -4,25 +4,43 @@ import time
import kraken.cerberus.setup as cerberus
from jinja2 import Template
import kraken.invoke.command as runcommand
from krkn_lib.telemetry.k8s import KrknTelemetryKubernetes
from krkn_lib.models.telemetry import ScenarioTelemetry
from krkn_lib.utils.functions import get_yaml_item_value, log_exception
# Reads the scenario config, applies and deletes a network policy to
# block the traffic for the specified duration
def run(scenarios_list, config, wait_duration):
def run(scenarios_list, config, wait_duration, telemetry: KrknTelemetryKubernetes) -> (list[str], list[ScenarioTelemetry]):
failed_post_scenarios = ""
scenario_telemetries: list[ScenarioTelemetry] = []
failed_scenarios = []
for app_outage_config in scenarios_list:
scenario_telemetry = ScenarioTelemetry()
scenario_telemetry.scenario = app_outage_config
scenario_telemetry.startTimeStamp = time.time()
telemetry.set_parameters_base64(scenario_telemetry, app_outage_config)
if len(app_outage_config) > 1:
with open(app_outage_config, "r") as f:
app_outage_config_yaml = yaml.full_load(f)
scenario_config = app_outage_config_yaml["application_outage"]
pod_selector = scenario_config.get("pod_selector", "{}")
traffic_type = scenario_config.get("block", "[Ingress, Egress]")
namespace = scenario_config.get("namespace", "")
duration = scenario_config.get("duration", 60)
try:
with open(app_outage_config, "r") as f:
app_outage_config_yaml = yaml.full_load(f)
scenario_config = app_outage_config_yaml["application_outage"]
pod_selector = get_yaml_item_value(
scenario_config, "pod_selector", "{}"
)
traffic_type = get_yaml_item_value(
scenario_config, "block", "[Ingress, Egress]"
)
namespace = get_yaml_item_value(
scenario_config, "namespace", ""
)
duration = get_yaml_item_value(
scenario_config, "duration", 60
)
start_time = int(time.time())
start_time = int(time.time())
network_policy_template = """---
network_policy_template = """---
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
@@ -31,28 +49,38 @@ spec:
podSelector:
matchLabels: {{ pod_selector }}
policyTypes: {{ traffic_type }}
"""
t = Template(network_policy_template)
rendered_spec = t.render(pod_selector=pod_selector, traffic_type=traffic_type)
# Write the rendered template to a file
with open("kraken_network_policy.yaml", "w") as f:
f.write(rendered_spec)
# Block the traffic by creating network policy
logging.info("Creating the network policy")
runcommand.invoke(
"kubectl create -f %s -n %s --validate=false" % ("kraken_network_policy.yaml", namespace)
)
"""
t = Template(network_policy_template)
rendered_spec = t.render(pod_selector=pod_selector, traffic_type=traffic_type)
# Write the rendered template to a file
with open("kraken_network_policy.yaml", "w") as f:
f.write(rendered_spec)
# Block the traffic by creating network policy
logging.info("Creating the network policy")
runcommand.invoke(
"kubectl create -f %s -n %s --validate=false" % ("kraken_network_policy.yaml", namespace)
)
# wait for the specified duration
logging.info("Waiting for the specified duration in the config: %s" % (duration))
time.sleep(duration)
# wait for the specified duration
logging.info("Waiting for the specified duration in the config: %s" % (duration))
time.sleep(duration)
# unblock the traffic by deleting the network policy
logging.info("Deleting the network policy")
runcommand.invoke("kubectl delete -f %s -n %s" % ("kraken_network_policy.yaml", namespace))
# unblock the traffic by deleting the network policy
logging.info("Deleting the network policy")
runcommand.invoke("kubectl delete -f %s -n %s" % ("kraken_network_policy.yaml", namespace))
logging.info("End of scenario. Waiting for the specified duration: %s" % (wait_duration))
time.sleep(wait_duration)
logging.info("End of scenario. Waiting for the specified duration: %s" % (wait_duration))
time.sleep(wait_duration)
end_time = int(time.time())
cerberus.publish_kraken_status(config, failed_post_scenarios, start_time, end_time)
except Exception as e :
scenario_telemetry.exitStatus = 1
failed_scenarios.append(app_outage_config)
log_exception(app_outage_config)
else:
scenario_telemetry.exitStatus = 0
scenario_telemetry.endTimeStamp = time.time()
scenario_telemetries.append(scenario_telemetry)
return failed_scenarios, scenario_telemetries
end_time = int(time.time())
cerberus.publish_kraken_status(config, failed_post_scenarios, start_time, end_time)

View File

@@ -0,0 +1,2 @@
from .arcaflow_plugin import *
from .context_auth import ContextAuth

View File

@@ -0,0 +1,178 @@
import time
import arcaflow
import os
import yaml
import logging
from pathlib import Path
from typing import List
from .context_auth import ContextAuth
from krkn_lib.telemetry.k8s import KrknTelemetryKubernetes
from krkn_lib.models.telemetry import ScenarioTelemetry
def run(scenarios_list: List[str], kubeconfig_path: str, telemetry: KrknTelemetryKubernetes) -> (list[str], list[ScenarioTelemetry]):
scenario_telemetries: list[ScenarioTelemetry] = []
failed_post_scenarios = []
for scenario in scenarios_list:
scenario_telemetry = ScenarioTelemetry()
scenario_telemetry.scenario = scenario
scenario_telemetry.startTimeStamp = time.time()
telemetry.set_parameters_base64(scenario_telemetry,scenario)
engine_args = build_args(scenario)
status_code = run_workflow(engine_args, kubeconfig_path)
scenario_telemetry.endTimeStamp = time.time()
scenario_telemetry.exitStatus = status_code
scenario_telemetries.append(scenario_telemetry)
if status_code != 0:
failed_post_scenarios.append(scenario)
return failed_post_scenarios, scenario_telemetries
def run_workflow(engine_args: arcaflow.EngineArgs, kubeconfig_path: str) -> int:
set_arca_kubeconfig(engine_args, kubeconfig_path)
exit_status = arcaflow.run(engine_args)
return exit_status
def build_args(input_file: str) -> arcaflow.EngineArgs:
"""sets the kubeconfig parsed by setArcaKubeConfig as an input to the arcaflow workflow"""
context = Path(input_file).parent
workflow = "{}/workflow.yaml".format(context)
config = "{}/config.yaml".format(context)
if not os.path.exists(context):
raise Exception(
"context folder for arcaflow workflow not found: {}".format(
context)
)
if not os.path.exists(input_file):
raise Exception(
"input file for arcaflow workflow not found: {}".format(input_file))
if not os.path.exists(workflow):
raise Exception(
"workflow file for arcaflow workflow not found: {}".format(
workflow)
)
if not os.path.exists(config):
raise Exception(
"configuration file for arcaflow workflow not found: {}".format(
config)
)
engine_args = arcaflow.EngineArgs()
engine_args.context = context
engine_args.config = config
engine_args.input = input_file
return engine_args
def set_arca_kubeconfig(engine_args: arcaflow.EngineArgs, kubeconfig_path: str):
context_auth = ContextAuth()
if not os.path.exists(kubeconfig_path):
raise Exception("kubeconfig not found in {}".format(kubeconfig_path))
with open(kubeconfig_path, "r") as stream:
try:
kubeconfig = yaml.safe_load(stream)
context_auth.fetch_auth_data(kubeconfig)
except Exception as e:
logging.error("impossible to read kubeconfig file in: {}".format(
kubeconfig_path))
raise e
kubeconfig_str = set_kubeconfig_auth(kubeconfig, context_auth)
with open(engine_args.input, "r") as stream:
input_file = yaml.safe_load(stream)
if "input_list" in input_file and isinstance(input_file["input_list"],list):
for index, _ in enumerate(input_file["input_list"]):
if isinstance(input_file["input_list"][index], dict):
input_file["input_list"][index]["kubeconfig"] = kubeconfig_str
else:
input_file["kubeconfig"] = kubeconfig_str
stream.close()
with open(engine_args.input, "w") as stream:
yaml.safe_dump(input_file, stream)
with open(engine_args.config, "r") as stream:
config_file = yaml.safe_load(stream)
if config_file["deployers"]["image"]["deployer_name"] == "kubernetes":
kube_connection = set_kubernetes_deployer_auth(config_file["deployers"]["image"]["connection"], context_auth)
config_file["deployers"]["image"]["connection"]=kube_connection
with open(engine_args.config, "w") as stream:
yaml.safe_dump(config_file, stream,explicit_start=True, width=4096)
def set_kubernetes_deployer_auth(deployer: any, context_auth: ContextAuth) -> any:
if context_auth.clusterHost is not None :
deployer["host"] = context_auth.clusterHost
if context_auth.clientCertificateData is not None :
deployer["cert"] = context_auth.clientCertificateData
if context_auth.clientKeyData is not None:
deployer["key"] = context_auth.clientKeyData
if context_auth.clusterCertificateData is not None:
deployer["cacert"] = context_auth.clusterCertificateData
if context_auth.username is not None:
deployer["username"] = context_auth.username
if context_auth.password is not None:
deployer["password"] = context_auth.password
if context_auth.bearerToken is not None:
deployer["bearerToken"] = context_auth.bearerToken
return deployer
def set_kubeconfig_auth(kubeconfig: any, context_auth: ContextAuth) -> str:
"""
Builds an arcaflow-compatible kubeconfig representation and returns it as a string.
In order to run arcaflow plugins in kubernetes/openshift the kubeconfig must contain client certificate/key
and server certificate base64 encoded within the kubeconfig file itself in *-data fields. That is not always the
case, infact kubeconfig may contain filesystem paths to those files, this function builds an arcaflow-compatible
kubeconfig file and returns it as a string that can be safely included in input.yaml
"""
if "current-context" not in kubeconfig.keys():
raise Exception(
"invalid kubeconfig file, impossible to determine current-context"
)
user_id = None
cluster_id = None
user_name = None
cluster_name = None
current_context = kubeconfig["current-context"]
for context in kubeconfig["contexts"]:
if context["name"] == current_context:
user_name = context["context"]["user"]
cluster_name = context["context"]["cluster"]
if user_name is None:
raise Exception(
"user not set for context {} in kubeconfig file".format(current_context)
)
if cluster_name is None:
raise Exception(
"cluster not set for context {} in kubeconfig file".format(current_context)
)
for index, user in enumerate(kubeconfig["users"]):
if user["name"] == user_name:
user_id = index
for index, cluster in enumerate(kubeconfig["clusters"]):
if cluster["name"] == cluster_name:
cluster_id = index
if cluster_id is None:
raise Exception(
"no cluster {} found in kubeconfig users".format(cluster_name)
)
if "client-certificate" in kubeconfig["users"][user_id]["user"]:
kubeconfig["users"][user_id]["user"]["client-certificate-data"] = context_auth.clientCertificateDataBase64
del kubeconfig["users"][user_id]["user"]["client-certificate"]
if "client-key" in kubeconfig["users"][user_id]["user"]:
kubeconfig["users"][user_id]["user"]["client-key-data"] = context_auth.clientKeyDataBase64
del kubeconfig["users"][user_id]["user"]["client-key"]
if "certificate-authority" in kubeconfig["clusters"][cluster_id]["cluster"]:
kubeconfig["clusters"][cluster_id]["cluster"]["certificate-authority-data"] = context_auth.clusterCertificateDataBase64
del kubeconfig["clusters"][cluster_id]["cluster"]["certificate-authority"]
kubeconfig_str = yaml.dump(kubeconfig)
return kubeconfig_str

View File

@@ -0,0 +1,142 @@
import yaml
import os
import base64
class ContextAuth:
clusterCertificate: str = None
clusterCertificateData: str = None
clusterHost: str = None
clientCertificate: str = None
clientCertificateData: str = None
clientKey: str = None
clientKeyData: str = None
clusterName: str = None
username: str = None
password: str = None
bearerToken: str = None
# TODO: integrate in krkn-lib-kubernetes in the next iteration
@property
def clusterCertificateDataBase64(self):
if self.clusterCertificateData is not None:
return base64.b64encode(bytes(self.clusterCertificateData,'utf8')).decode("ascii")
return
@property
def clientCertificateDataBase64(self):
if self.clientCertificateData is not None:
return base64.b64encode(bytes(self.clientCertificateData,'utf8')).decode("ascii")
return
@property
def clientKeyDataBase64(self):
if self.clientKeyData is not None:
return base64.b64encode(bytes(self.clientKeyData,"utf-8")).decode("ascii")
return
def fetch_auth_data(self, kubeconfig: any):
context_username = None
current_context = kubeconfig["current-context"]
if current_context is None:
raise Exception("no current-context found in kubeconfig")
for context in kubeconfig["contexts"]:
if context["name"] == current_context:
context_username = context["context"]["user"]
self.clusterName = context["context"]["cluster"]
if context_username is None:
raise Exception("user not found for context {0}".format(current_context))
if self.clusterName is None:
raise Exception("cluster not found for context {0}".format(current_context))
cluster_id = None
user_id = None
for index, user in enumerate(kubeconfig["users"]):
if user["name"] == context_username:
user_id = index
if user_id is None :
raise Exception("user {0} not found in kubeconfig users".format(context_username))
for index, cluster in enumerate(kubeconfig["clusters"]):
if cluster["name"] == self.clusterName:
cluster_id = index
if cluster_id is None:
raise Exception(
"no cluster {} found in kubeconfig users".format(self.clusterName)
)
user = kubeconfig["users"][user_id]["user"]
cluster = kubeconfig["clusters"][cluster_id]["cluster"]
# sets cluster api URL
self.clusterHost = cluster["server"]
# client certificates
if "client-key" in user:
try:
self.clientKey = user["client-key"]
self.clientKeyData = self.read_file(user["client-key"])
except Exception as e:
raise e
if "client-key-data" in user:
try:
self.clientKeyData = base64.b64decode(user["client-key-data"]).decode('utf-8')
except Exception as e:
raise Exception("impossible to decode client-key-data")
if "client-certificate" in user:
try:
self.clientCertificate = user["client-certificate"]
self.clientCertificateData = self.read_file(user["client-certificate"])
except Exception as e:
raise e
if "client-certificate-data" in user:
try:
self.clientCertificateData = base64.b64decode(user["client-certificate-data"]).decode('utf-8')
except Exception as e:
raise Exception("impossible to decode client-certificate-data")
# cluster certificate authority
if "certificate-authority" in cluster:
try:
self.clusterCertificate = cluster["certificate-authority"]
self.clusterCertificateData = self.read_file(cluster["certificate-authority"])
except Exception as e:
raise e
if "certificate-authority-data" in cluster:
try:
self.clusterCertificateData = base64.b64decode(cluster["certificate-authority-data"]).decode('utf-8')
except Exception as e:
raise Exception("impossible to decode certificate-authority-data")
if "username" in user:
self.username = user["username"]
if "password" in user:
self.password = user["password"]
if "token" in user:
self.bearerToken = user["token"]
def read_file(self, filename:str) -> str:
if not os.path.exists(filename):
raise Exception("file not found {0} ".format(filename))
with open(filename, "rb") as file_stream:
return file_stream.read().decode('utf-8')

View File

@@ -0,0 +1,19 @@
-----BEGIN CERTIFICATE-----
MIIDBjCCAe6gAwIBAgIBATANBgkqhkiG9w0BAQsFADAVMRMwEQYDVQQDEwptaW5p
a3ViZUNBMB4XDTIzMDMxMzE1NDAxM1oXDTMzMDMxMTE1NDAxM1owFTETMBEGA1UE
AxMKbWluaWt1YmVDQTCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAMnz
U/gIbJBRGOgNYVKX2fV03ANOwnM4VjquR28QMAdxURqgOFZ6IxYNysHEyxxE9I+I
DAm9hi4vQPbOX7FlxUezuzw+ExEfa6RRJ+n+AGJOV1lezCVph6OaJxB1+L1UqaDZ
eM3B4cUf/iCc5Y4bs927+CBG3MJL/jmCVPCO+MiSn/l73PXSFNJAYMvRj42zkXqD
CVG9CwY2vWgZnnzl01l7jNGtie871AmV2uqKakJrQ2ILhD+8fZk4jE5JBDTCZnqQ
pXIc+vERNKLUS8cvjO6Ux8dMv/Z7+xonpXOU59LlpUdHWP9jgCvMTwiOriwqGjJ+
pQJWpX9Dm+oxJiVOJzsCAwEAAaNhMF8wDgYDVR0PAQH/BAQDAgKkMB0GA1UdJQQW
MBQGCCsGAQUFBwMCBggrBgEFBQcDATAPBgNVHRMBAf8EBTADAQH/MB0GA1UdDgQW
BBQU9pDMtbayJdNM6bp0IG8dcs15qTANBgkqhkiG9w0BAQsFAAOCAQEAtl9TVKPA
hTnPODqv0AGTqreS9kLg4WUUjZRaPUkPWmtCoTh2Yf55nRWdHOHeZnCWDSg24x42
lpt+13IdqKew1RKTpKCTkicMFi090A01bYu/w39Cm6nOAA5h8zkgSkV5czvQotuV
SoN2vB+nbuY28ah5PkdqjMHEZbNwa59cgEke8wB1R1DWFQ/pqflrH2v9ACAuY+5Q
i673tA6CXrb1YfaCQnVBzcfvjGS1MqShPKpOLMF+/GccPczNimaBxMnKvYLvf3pN
qEUrJC00mAcein8HmxR2Xz8wredbMUUyrQxW29pZJwfGE5GU0olnlsA0lZLbTwio
xoolo5y+fsK/dA==
-----END CERTIFICATE-----

View File

@@ -0,0 +1,19 @@
-----BEGIN CERTIFICATE-----
MIIDITCCAgmgAwIBAgIBAjANBgkqhkiG9w0BAQsFADAVMRMwEQYDVQQDEwptaW5p
a3ViZUNBMB4XDTIzMDUwMTA4NTc0N1oXDTI2MDUwMTA4NTc0N1owMTEXMBUGA1UE
ChMOc3lzdGVtOm1hc3RlcnMxFjAUBgNVBAMTDW1pbmlrdWJlLXVzZXIwggEiMA0G
CSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQC0b7uy9nQYrh7uC5NODve7dFNLAgo5
pWRS6Kx13ULA55gOpieZiI5/1jwUBjOz0Hhl5QAdHC1HDNu5wf4MmwIEheuq3kMA
mfuvNxW2BnWSDuXyUMlBfqlwg5o6W8ndEWaK33D7wd2WQsSsAnhQPJSjnzWKvWKq
+Kbcygc4hdss/ZWN+SXLTahNpHBw0sw8AcJqddNeXs2WI5GdZmbXL4QZI36EaNUm
m4xKmKRKYIP9wYkmXOV/D2h1meM44y4lul5v2qvo6I+umJ84q4W1/W1vVmAzyVfL
v1TQCUx8cpKMHzw3ma6CTBCtU3Oq9HKHBnf8GyHZicmV7ESzf/phJu4ZAgMBAAGj
YDBeMA4GA1UdDwEB/wQEAwIFoDAdBgNVHSUEFjAUBggrBgEFBQcDAQYIKwYBBQUH
AwIwDAYDVR0TAQH/BAIwADAfBgNVHSMEGDAWgBQU9pDMtbayJdNM6bp0IG8dcs15
qTANBgkqhkiG9w0BAQsFAAOCAQEABNzEQQMYUcLsBASHladEjr46avKn7gREfaDl
Y5PBvgCPP42q/sW/9iCNY3UpT9TJZWM6s01+0p6I96jYbRQER1NX7O4OgQYHmFw2
PF6UOG2vMo54w11OvL7sbr4d+nkE6ItdM9fLDIJ3fEOYJZkSoxhOL/U3jSjIl7Wu
KCIlpM/M/gcZ4w2IvcLrWtvswbFNUd+dwQfBGcQTmSQDOLE7MqSvzYAkeNv73GLB
ieba7gs/PmoTFsf9nW60iXymDDF4MtODn15kqT/y1uD6coujmiEiIomBfxqAkUCU
0ciP/KF5oOEMmMedm7/peQxaRTMdRSk4yu7vbj/BxnTcj039Qg==
-----END CERTIFICATE-----

View File

@@ -0,0 +1,27 @@
-----BEGIN RSA PRIVATE KEY-----
MIIEowIBAAKCAQEAtG+7svZ0GK4e7guTTg73u3RTSwIKOaVkUuisdd1CwOeYDqYn
mYiOf9Y8FAYzs9B4ZeUAHRwtRwzbucH+DJsCBIXrqt5DAJn7rzcVtgZ1kg7l8lDJ
QX6pcIOaOlvJ3RFmit9w+8HdlkLErAJ4UDyUo581ir1iqvim3MoHOIXbLP2Vjfkl
y02oTaRwcNLMPAHCanXTXl7NliORnWZm1y+EGSN+hGjVJpuMSpikSmCD/cGJJlzl
fw9odZnjOOMuJbpeb9qr6OiPrpifOKuFtf1tb1ZgM8lXy79U0AlMfHKSjB88N5mu
gkwQrVNzqvRyhwZ3/Bsh2YnJlexEs3/6YSbuGQIDAQABAoIBAQCdJxPb8zt6o2zc
98f8nJy378D7+3LccmjGrVBH98ZELXIKkDy9RGqYfQcmiaBOZKv4U1OeBwSIdXKK
f6O9ZuSC/AEeeSbyRysmmFuYhlewNrmgKyyelqsNDBIv8fIHUTh2i9Xj8B4G2XBi
QGR5vcnYGLqRdBGTx63Nb0iKuksDCwPAuPA/e0ySz9HdWL1j4bqpVSYsOIXsqTDr
CVnxUeSIL0fFQnRm3IASXQD7zdq9eEFX7vESeleZoz8qNcKb4Na/C3N6crScjgH7
qyNZ2zNLfy1LT84k8uc1TMX2KcEVEmfdDv5cCnUH2ic12CwXMZ0vgId5LJTaHx4x
ytIQIe5hAoGBANB+TsRXP4KzcjZlUUfiAp/pWUM4kVktbsfZa1R2NEuIGJUxPk3P
7WS0WX5W75QKRg+UWTubg5kfd0f9fklLgofmliBnY/HrpgdyugJmUZBgzIxmy0k+
aCe0biD1gULfyyrKtfe8k5wRFstzhfGszlOf2ebR87sSVNBuF2lEwPTvAoGBAN2M
0/XrsodGU4B9Mj86Go2gb2k2WU2izI0cO+tm2S5U5DvKmVEnmjXfPRaOFj2UUQjo
cljnDAinbN+O0+Inc35qsEeYdAIepNAPglzcpfTHagja9mhx2idLYTXGhbZLL+Ei
TRzMyP27NF+GVVfYU/cA86ns6NboG6spohmnqh13AoGAKPc4aNGv0/GIVnHP56zb
0SnbdR7PSFNp+fCZay4Slmi2U9IqKMXbIjdhgjZ4uoDORU9jvReQYuzQ1h9TyfkB
O8yt4M4P0D/6DmqXa9NI4XJznn6wIMMXWf3UybsTW913IQBVgsjVxAuDjBQ11Eec
/sdg3D6SgkZWzeFjzjZJJ5cCgYBSYVg7fE3hERxhjawOaJuRCBQFSklAngVzfwkk
yhR9ruFC/l2uGIy19XFwnprUgP700gIa3qbR3PeV1TUiRcsjOaacqKqSUzSzjODL
iNxIvZHHAyxWv+b/b38REOWNWD3QeAG2cMtX1bFux7OaO31VPkxcZhRaPOp05cE5
yudtlwKBgDBbR7RLYn03OPm3NDBLLjTybhD8Iu8Oj7UeNCiEWAdZpqIKYnwSxMzQ
kdo4aTENA/seEwq+XDV7TwbUIFFJg5gDXIhkcK2c9kiO2bObCAmKpBlQCcrp0a5X
NSBk1N/ZG/Qhqns7z8k01KN4LNcdpRoNiYYPgY+p3xbY8+nWhv+q
-----END RSA PRIVATE KEY-----

View File

@@ -0,0 +1,100 @@
import os
import unittest
from context_auth import ContextAuth
class TestCurrentContext(unittest.TestCase):
def get_kubeconfig_with_data(self) -> str:
"""
This function returns a test kubeconfig file as a string.
:return: a test kubeconfig file in string format (for unit testing purposes)
""" # NOQA
return """apiVersion: v1
clusters:
- cluster:
certificate-authority-data: LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUM5ekNDQWQrZ0F3SUJBZ0lVV01PTVBNMVUrRi9uNXN6TSthYzlMcGZISHB3d0RRWUpLb1pJaHZjTkFRRUwKQlFBd0hqRWNNQm9HQTFVRUF3d1RhM1ZpZFc1MGRTNXNiMk5oYkdSdmJXRnBiakFlRncweU1URXlNRFl4T0RBdwpNRFJhRncwek1URXlNRFF4T0RBd01EUmFNQjR4SERBYUJnTlZCQU1NRTJ0MVluVnVkSFV1Ykc5allXeGtiMjFoCmFXNHdnZ0VpTUEwR0NTcUdTSWIzRFFFQkFRVUFBNElCRHdBd2dnRUtBb0lCQVFDNExhcG00SDB0T1NuYTNXVisKdzI4a0tOWWRwaHhYOUtvNjUwVGlOK2c5ZFNQU3VZK0V6T1JVOWVONlgyWUZkMEJmVFNodno4Y25rclAvNysxegpETEoxQ3MwRi9haEV3ZDQxQXN5UGFjbnRiVE80dGRLWm9POUdyODR3YVdBN1hSZmtEc2ZxRGN1YW5UTmVmT1hpCkdGbmdDVzU5Q285M056alB1eEFrakJxdVF6eE5GQkgwRlJPbXJtVFJ4cnVLZXo0aFFuUW1OWEFUNnp0M21udzMKWUtWTzU4b2xlcUxUcjVHNlRtVFQyYTZpVGdtdWY2N0cvaVZlalJGbkw3YkNHWmgzSjlCSTNMcVpqRzE4dWxvbgpaVDdQcGQrQTlnaTJOTm9UZlI2TVB5SndxU1BCL0xZQU5ZNGRoZDVJYlVydDZzbmViTlRZSHV2T0tZTDdNTWRMCmVMSzFBZ01CQUFHakxUQXJNQWtHQTFVZEV3UUNNQUF3SGdZRFZSMFJCQmN3RllJVGEzVmlkVzUwZFM1c2IyTmgKYkdSdmJXRnBiakFOQmdrcWhraUc5dzBCQVFzRkFBT0NBUUVBQTVqUHVpZVlnMExySE1PSkxYY0N4d3EvVzBDNApZeFpncVd3VHF5VHNCZjVKdDlhYTk0SkZTc2dHQWdzUTN3NnA2SlBtL0MyR05MY3U4ZWxjV0E4UXViQWxueXRRCnF1cEh5WnYrZ08wMG83TXdrejZrTUxqQVZ0QllkRzJnZ21FRjViTEk5czBKSEhjUGpHUkl1VHV0Z0tHV1dPWHgKSEg4T0RzaG9wZHRXMktrR2c2aThKaEpYaWVIbzkzTHptM00xRUNGcXAvMEdtNkN1RFphVVA2SGpJMWRrYllLdgpsSHNVZ1U1SmZjSWhNYmJLdUllTzRkc1YvT3FHcm9iNW5vcmRjaExBQmRDTnc1cmU5T1NXZGZ1VVhSK0ViZVhrCjVFM0tFYzA1RGNjcGV2a1NTdlJ4SVQrQzNMOTltWGcxL3B5NEw3VUhvNFFLTXlqWXJXTWlLRlVKV1E9PQotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg==
server: https://127.0.0.1:6443
name: default
contexts:
- context:
cluster: default
namespace: default
user: testuser
name: default
current-context: default
kind: Config
preferences: {}
users:
- name: testuser
user:
client-certificate-data: LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUM5ekNDQWQrZ0F3SUJBZ0lVV01PTVBNMVUrRi9uNXN6TSthYzlMcGZISHB3d0RRWUpLb1pJaHZjTkFRRUwKQlFBd0hqRWNNQm9HQTFVRUF3d1RhM1ZpZFc1MGRTNXNiMk5oYkdSdmJXRnBiakFlRncweU1URXlNRFl4T0RBdwpNRFJhRncwek1URXlNRFF4T0RBd01EUmFNQjR4SERBYUJnTlZCQU1NRTJ0MVluVnVkSFV1Ykc5allXeGtiMjFoCmFXNHdnZ0VpTUEwR0NTcUdTSWIzRFFFQkFRVUFBNElCRHdBd2dnRUtBb0lCQVFDNExhcG00SDB0T1NuYTNXVisKdzI4a0tOWWRwaHhYOUtvNjUwVGlOK2c5ZFNQU3VZK0V6T1JVOWVONlgyWUZkMEJmVFNodno4Y25rclAvNysxegpETEoxQ3MwRi9haEV3ZDQxQXN5UGFjbnRiVE80dGRLWm9POUdyODR3YVdBN1hSZmtEc2ZxRGN1YW5UTmVmT1hpCkdGbmdDVzU5Q285M056alB1eEFrakJxdVF6eE5GQkgwRlJPbXJtVFJ4cnVLZXo0aFFuUW1OWEFUNnp0M21udzMKWUtWTzU4b2xlcUxUcjVHNlRtVFQyYTZpVGdtdWY2N0cvaVZlalJGbkw3YkNHWmgzSjlCSTNMcVpqRzE4dWxvbgpaVDdQcGQrQTlnaTJOTm9UZlI2TVB5SndxU1BCL0xZQU5ZNGRoZDVJYlVydDZzbmViTlRZSHV2T0tZTDdNTWRMCmVMSzFBZ01CQUFHakxUQXJNQWtHQTFVZEV3UUNNQUF3SGdZRFZSMFJCQmN3RllJVGEzVmlkVzUwZFM1c2IyTmgKYkdSdmJXRnBiakFOQmdrcWhraUc5dzBCQVFzRkFBT0NBUUVBQTVqUHVpZVlnMExySE1PSkxYY0N4d3EvVzBDNApZeFpncVd3VHF5VHNCZjVKdDlhYTk0SkZTc2dHQWdzUTN3NnA2SlBtL0MyR05MY3U4ZWxjV0E4UXViQWxueXRRCnF1cEh5WnYrZ08wMG83TXdrejZrTUxqQVZ0QllkRzJnZ21FRjViTEk5czBKSEhjUGpHUkl1VHV0Z0tHV1dPWHgKSEg4T0RzaG9wZHRXMktrR2c2aThKaEpYaWVIbzkzTHptM00xRUNGcXAvMEdtNkN1RFphVVA2SGpJMWRrYllLdgpsSHNVZ1U1SmZjSWhNYmJLdUllTzRkc1YvT3FHcm9iNW5vcmRjaExBQmRDTnc1cmU5T1NXZGZ1VVhSK0ViZVhrCjVFM0tFYzA1RGNjcGV2a1NTdlJ4SVQrQzNMOTltWGcxL3B5NEw3VUhvNFFLTXlqWXJXTWlLRlVKV1E9PQotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg==
client-key-data: LS0tLS1CRUdJTiBQUklWQVRFIEtFWS0tLS0tCk1JSUV2QUlCQURBTkJna3Foa2lHOXcwQkFRRUZBQVNDQktZd2dnU2lBZ0VBQW9JQkFRQzRMYXBtNEgwdE9TbmEKM1dWK3cyOGtLTllkcGh4WDlLbzY1MFRpTitnOWRTUFN1WStFek9SVTllTjZYMllGZDBCZlRTaHZ6OGNua3JQLwo3KzF6RExKMUNzMEYvYWhFd2Q0MUFzeVBhY250YlRPNHRkS1pvTzlHcjg0d2FXQTdYUmZrRHNmcURjdWFuVE5lCmZPWGlHRm5nQ1c1OUNvOTNOempQdXhBa2pCcXVRenhORkJIMEZST21ybVRSeHJ1S2V6NGhRblFtTlhBVDZ6dDMKbW53M1lLVk81OG9sZXFMVHI1RzZUbVRUMmE2aVRnbXVmNjdHL2lWZWpSRm5MN2JDR1poM0o5QkkzTHFaakcxOAp1bG9uWlQ3UHBkK0E5Z2kyTk5vVGZSNk1QeUp3cVNQQi9MWUFOWTRkaGQ1SWJVcnQ2c25lYk5UWUh1dk9LWUw3Ck1NZExlTEsxQWdNQkFBRUNnZ0VBQ28rank4NW5ueVk5L2l6ZjJ3cjkzb2J3OERaTVBjYnIxQURhOUZYY1hWblEKT2c4bDZhbU9Ga2tiU0RNY09JZ0VDdkx6dEtXbmQ5OXpydU5sTEVtNEdmb0trNk5kK01OZEtKRUdoZHE5RjM1Qgpqdi91R1owZTIyRE5ZLzFHNVdDTE5DcWMwQkVHY2RFOTF0YzJuMlppRVBTNWZ6WVJ6L1k4cmJ5K1NqbzJkWE9RCmRHYWRlUFplbi9UbmlHTFlqZWhrbXZNQjJvU0FDbVMycTd2OUNrcmdmR1RZbWJzeGVjSU1QK0JONG9KS3BOZ28KOUpnRWJ5SUxkR1pZS2pQb2lLaHNjMVhmSy8zZStXSmxuYjJBaEE5Y1JMUzhMcDdtcEYySWp4SjNSNE93QTg3WQpNeGZvZWFGdnNuVUFHWUdFWFo4Z3BkWmhQMEoxNWRGdERjajIrcngrQVFLQmdRRDFoSE9nVGdFbERrVEc5bm5TCjE1eXYxRzUxYnJMQU1UaWpzNklEMU1qelhzck0xY2ZvazVaaUlxNVJsQ3dReTlYNDdtV1RhY0lZRGR4TGJEcXEKY0IydjR5Wm1YK1VleGJ3cDU1OWY0V05HdzF5YzQrQjdaNFF5aTRFelN4WmFjbldjMnBzcHJMUFVoOUFXRXVNcApOaW1vcXNiVGNnNGs5QWRxeUIrbWhIWmJRUUtCZ1FEQUNzU09qNXZMU1VtaVpxYWcrOVMySUxZOVNOdDZzS1VyCkprcjdCZEVpN3N2YmU5cldRR2RBb0xkQXNzcU94aENydmtPNkpSSHB1YjlRRjlYdlF4Riszc2ZpZm4yYkQ0ZloKMlVsclA1emF3RlNrNDNLbjdMZzRscURpaVUxVGlqTkJBL3dUcFlmbTB4dW5WeFRWNDZpNVViQW1XRk12TWV0bQozWUZYQmJkK2RRS0JnRGl6Q1B6cFpzeEcrazAwbUxlL2dYajl4ekNwaXZCbHJaM29teTdsVWk4YUloMmg5VlBaCjJhMzZNbVcyb1dLVG9HdW5xcCtibWU1eUxRRGlFcjVQdkJ0bGl2V3ppYmRNbFFMY2Nlcnpveml4WDA4QU5WUnEKZUpZdnIzdklDSGFFM25LRjdiVjNJK1NlSk1ra1BYL0QrV1R4WTQ5clZLYm1FRnh4c1JXRW04ekJBb0dBWEZ3UgpZanJoQTZqUW1DRmtYQ0loa0NJMVkwNEorSHpDUXZsY3NGT0EzSnNhUWduVUdwekl5OFUvdlFiLzhpQ0IzZ2RZCmpVck16YXErdnVkbnhYVnRFYVpWWGJIVitPQkVSdHFBdStyUkprZS9yYm1SNS84cUxsVUxOVWd4ZjA4RkRXeTgKTERxOUhKOUZPbnJnRTJvMU9FTjRRMGpSWU81U041dXFXODd0REEwQ2dZQXpXbk1KSFgrbmlyMjhRRXFyVnJKRAo4ZUEwOHIwWTJRMDhMRlcvMjNIVWQ4WU12VnhTUTdwcUwzaE41RXVJQ2dCbEpGVFI3TndBREo3eDY2M002akFMCm1DNlI4dWxSZStwa08xN2Y0UUs3MnVRanJGZEhESnlXQmdDL0RKSkV6d1dwY0Q4VVNPK3A5bVVIbllLTUJTOEsKTVB1ejYrZ3h0VEtsRU5pZUVacXhxZz09Ci0tLS0tRU5EIFBSSVZBVEUgS0VZLS0tLS0K
username: testuser
password: testpassword
token: sha256~fFyEqjf1xxFMO0tbEyGRvWeNOd7QByuEgS4hyEq_A9o
""" # NOQA
def get_kubeconfig_with_paths(self) -> str:
"""
This function returns a test kubeconfig file as a string.
:return: a test kubeconfig file in string format (for unit testing purposes)
""" # NOQA
return """apiVersion: v1
clusters:
- cluster:
certificate-authority: fixtures/ca.crt
server: https://127.0.0.1:6443
name: default
contexts:
- context:
cluster: default
namespace: default
user: testuser
name: default
current-context: default
kind: Config
preferences: {}
users:
- name: testuser
user:
client-certificate: fixtures/client.crt
client-key: fixtures/client.key
username: testuser
password: testpassword
token: sha256~fFyEqjf1xxFMO0tbEyGRvWeNOd7QByuEgS4hyEq_A9o
""" # NOQA
def test_current_context(self):
cwd = os.getcwd()
current_context_data = ContextAuth()
current_context_data.fetch_auth_data(self.get_kubeconfig_with_data())
self.assertIsNotNone(current_context_data.clusterCertificateData)
self.assertIsNotNone(current_context_data.clientCertificateData)
self.assertIsNotNone(current_context_data.clientKeyData)
self.assertIsNotNone(current_context_data.username)
self.assertIsNotNone(current_context_data.password)
self.assertIsNotNone(current_context_data.bearerToken)
self.assertIsNotNone(current_context_data.clusterHost)
current_context_no_data = ContextAuth()
current_context_no_data.fetch_auth_data(self.get_kubeconfig_with_paths())
self.assertIsNotNone(current_context_no_data.clusterCertificate)
self.assertIsNotNone(current_context_no_data.clusterCertificateData)
self.assertIsNotNone(current_context_no_data.clientCertificate)
self.assertIsNotNone(current_context_no_data.clientCertificateData)
self.assertIsNotNone(current_context_no_data.clientKey)
self.assertIsNotNone(current_context_no_data.clientKeyData)
self.assertIsNotNone(current_context_no_data.username)
self.assertIsNotNone(current_context_no_data.password)
self.assertIsNotNone(current_context_no_data.bearerToken)
self.assertIsNotNone(current_context_data.clusterHost)

View File

@@ -0,0 +1,3 @@
from .analysis import *
from .kraken_tests import *
from .prometheus import *

View File

@@ -0,0 +1,109 @@
import logging
import pandas as pd
import kraken.chaos_recommender.kraken_tests as kraken_tests
import time
KRAKEN_TESTS_PATH = "./kraken_chaos_tests.txt"
# Placeholder, this should be done with topology
def return_critical_services():
return ["web", "cart"]
def load_telemetry_data(file_path):
data = pd.read_csv(file_path, delimiter=r"\s+")
return data
def calculate_zscores(data):
zscores = pd.DataFrame()
zscores["Service"] = data["service"]
zscores["CPU"] = (data["CPU"] - data["CPU"].mean()) / data["CPU"].std()
zscores["Memory"] = (data["MEM"] - data["MEM"].mean()) / data["MEM"].std()
zscores["Network"] = (data["NETWORK"] - data["NETWORK"].mean()) / data["NETWORK"].std()
return zscores
def identify_outliers(data, threshold):
outliers_cpu = data[data["CPU"] > threshold]["Service"].tolist()
outliers_memory = data[data["Memory"] > threshold]["Service"].tolist()
outliers_network = data[data["Network"] > threshold]["Service"].tolist()
return outliers_cpu, outliers_memory, outliers_network
def get_services_above_heatmap_threshold(dataframe, cpu_threshold, mem_threshold):
# Filter the DataFrame based on CPU_HEATMAP and MEM_HEATMAP thresholds
filtered_df = dataframe[((dataframe['CPU']/dataframe['CPU_LIMITS']) > cpu_threshold)]
# Get the lists of services
cpu_services = filtered_df['service'].tolist()
filtered_df = dataframe[((dataframe['MEM']/dataframe['MEM_LIMITS']) > mem_threshold)]
mem_services = filtered_df['service'].tolist()
return cpu_services, mem_services
def analysis(file_path, chaos_tests_config, threshold, heatmap_cpu_threshold, heatmap_mem_threshold):
# Load the telemetry data from file
logging.info("Fetching the Telemetry data")
data = load_telemetry_data(file_path)
# Calculate Z-scores for CPU, Memory, and Network columns
zscores = calculate_zscores(data)
# Identify outliers
logging.info("Identifying outliers")
outliers_cpu, outliers_memory, outliers_network = identify_outliers(zscores, threshold)
cpu_services, mem_services = get_services_above_heatmap_threshold(data, heatmap_cpu_threshold, heatmap_mem_threshold)
analysis_data = analysis_json(outliers_cpu, outliers_memory,
outliers_network, cpu_services,
mem_services, chaos_tests_config)
if not cpu_services:
logging.info("There are no services that are using significant CPU compared to their assigned limits (infinite in case no limits are set).")
if not mem_services:
logging.info("There are no services that are using significant MEMORY compared to their assigned limits (infinite in case no limits are set).")
time.sleep(2)
logging.info("Please check data in utilisation.txt for further analysis")
return analysis_data
def analysis_json(outliers_cpu, outliers_memory, outliers_network,
cpu_services, mem_services, chaos_tests_config):
profiling = {
"cpu_outliers": outliers_cpu,
"memory_outliers": outliers_memory,
"network_outliers": outliers_network
}
heatmap = {
"services_with_cpu_heatmap_above_threshold": cpu_services,
"services_with_mem_heatmap_above_threshold": mem_services
}
recommendations = {}
if cpu_services:
cpu_recommend = {"services": cpu_services,
"tests": chaos_tests_config['CPU']}
recommendations["cpu_services_recommendations"] = cpu_recommend
if mem_services:
mem_recommend = {"services": mem_services,
"tests": chaos_tests_config['MEM']}
recommendations["mem_services_recommendations"] = mem_recommend
if outliers_network:
outliers_network_recommend = {"outliers_networks": outliers_network,
"tests": chaos_tests_config['NETWORK']}
recommendations["outliers_network_recommendations"] = (
outliers_network_recommend)
return [profiling, heatmap, recommendations]

View File

@@ -0,0 +1,30 @@
def get_entries_by_category(filename, category):
# Read the file
with open(filename, 'r') as file:
content = file.read()
# Split the content into sections based on the square brackets
sections = content.split('\n\n')
# Define the categories
valid_categories = ['CPU', 'NETWORK', 'MEM', 'GENERIC']
# Validate the provided category
if category not in valid_categories:
return []
# Find the section corresponding to the specified category
target_section = None
for section in sections:
if section.startswith(f"[{category}]"):
target_section = section
break
# If the category section was not found, return an empty list
if target_section is None:
return []
# Extract the entries from the category section
entries = [entry.strip() for entry in target_section.split('\n') if entry and not entry.startswith('[')]
return entries

View File

@@ -0,0 +1,94 @@
import logging
from prometheus_api_client import PrometheusConnect
import pandas as pd
import urllib3
saved_metrics_path = "./utilisation.txt"
def convert_data_to_dataframe(data, label):
df = pd.DataFrame()
df['service'] = [item['metric']['pod'] for item in data]
df[label] = [item['value'][1] for item in data]
return df
def convert_data(data, service):
result = {}
for entry in data:
pod_name = entry['metric']['pod']
value = entry['value'][1]
result[pod_name] = value
return result.get(service, '100000000000') # for those pods whose limits are not defined they can take as much resources, there assigning a very high value
def save_utilization_to_file(cpu_data, cpu_limits_result, mem_data, mem_limits_result, network_data, filename):
df_cpu = convert_data_to_dataframe(cpu_data, "CPU")
merged_df = pd.DataFrame(columns=['service','CPU','CPU_LIMITS','MEM','MEM_LIMITS','NETWORK'])
services = df_cpu.service.unique()
logging.info(services)
for s in services:
new_row_df = pd.DataFrame( {"service": s, "CPU" : convert_data(cpu_data, s),
"CPU_LIMITS" : convert_data(cpu_limits_result, s),
"MEM" : convert_data(mem_data, s), "MEM_LIMITS" : convert_data(mem_limits_result, s),
"NETWORK" : convert_data(network_data, s)}, index=[0])
merged_df = pd.concat([merged_df, new_row_df], ignore_index=True)
# Convert columns to string
merged_df['CPU'] = merged_df['CPU'].astype(str)
merged_df['MEM'] = merged_df['MEM'].astype(str)
merged_df['CPU_LIMITS'] = merged_df['CPU_LIMITS'].astype(str)
merged_df['MEM_LIMITS'] = merged_df['MEM_LIMITS'].astype(str)
merged_df['NETWORK'] = merged_df['NETWORK'].astype(str)
# Extract integer part before the decimal point
merged_df['CPU'] = merged_df['CPU'].str.split('.').str[0]
merged_df['MEM'] = merged_df['MEM'].str.split('.').str[0]
merged_df['CPU_LIMITS'] = merged_df['CPU_LIMITS'].str.split('.').str[0]
merged_df['MEM_LIMITS'] = merged_df['MEM_LIMITS'].str.split('.').str[0]
merged_df['NETWORK'] = merged_df['NETWORK'].str.split('.').str[0]
merged_df.to_csv(filename, sep='\t', index=False)
def fetch_utilization_from_prometheus(prometheus_endpoint, auth_token, namespace, scrape_duration):
urllib3.disable_warnings()
prometheus = PrometheusConnect(url=prometheus_endpoint, headers={'Authorization':'Bearer {}'.format(auth_token)}, disable_ssl=True)
# Fetch CPU utilization
logging.info("Fetching utilization")
cpu_query = 'sum (rate (container_cpu_usage_seconds_total{image!="", namespace="%s"}[%s])) by (pod) *1000' % (namespace,scrape_duration)
cpu_result = prometheus.custom_query(cpu_query)
cpu_limits_query = '(sum by (pod) (kube_pod_container_resource_limits{resource="cpu", namespace="%s"}))*1000' %(namespace)
cpu_limits_result = prometheus.custom_query(cpu_limits_query)
mem_query = 'sum by (pod) (avg_over_time(container_memory_usage_bytes{image!="", namespace="%s"}[%s]))' % (namespace, scrape_duration)
mem_result = prometheus.custom_query(mem_query)
mem_limits_query = 'sum by (pod) (kube_pod_container_resource_limits{resource="memory", namespace="%s"}) ' %(namespace)
mem_limits_result = prometheus.custom_query(mem_limits_query)
network_query = 'sum by (pod) ((avg_over_time(container_network_transmit_bytes_total{namespace="%s"}[%s])) + \
(avg_over_time(container_network_receive_bytes_total{namespace="%s"}[%s])))' % (namespace, scrape_duration, namespace, scrape_duration)
network_result = prometheus.custom_query(network_query)
save_utilization_to_file(cpu_result, cpu_limits_result, mem_result, mem_limits_result, network_result, saved_metrics_path)
queries = json_queries(cpu_query, cpu_limits_query, mem_query, mem_limits_query)
return saved_metrics_path, queries
def json_queries(cpu_query, cpu_limits_query, mem_query, mem_limits_query):
queries = {
"cpu_query": cpu_query,
"cpu_limit_query": cpu_limits_query,
"memory_query": mem_query,
"memory_limit_query": mem_limits_query
}
return queries

View File

@@ -1,102 +0,0 @@
import subprocess
import logging
import urllib.request
import shutil
import sys
import kraken.prometheus.client as prometheus
def setup(url):
"""
Downloads and unpacks kube-burner binary
"""
filename = "kube_burner.tar"
try:
logging.info("Fetching kube-burner binary")
urllib.request.urlretrieve(url, filename)
except Exception as e:
logging.error("Failed to download kube-burner binary located at %s" % url, e)
sys.exit(1)
try:
logging.info("Unpacking kube-burner tar ball")
shutil.unpack_archive(filename)
except Exception as e:
logging.error("Failed to unpack the kube-burner binary tarball: %s" % e)
sys.exit(1)
def scrape_metrics(
distribution, uuid, prometheus_url, prometheus_bearer_token, start_time, end_time, config_path, metrics_profile
):
"""
Scrapes metrics defined in the profile from Prometheus and indexes them into Elasticsearch
"""
if not prometheus_url:
if distribution == "openshift":
logging.info("Looks like prometheus_url is not defined, trying to use the default instance on the cluster")
prometheus_url, prometheus_bearer_token = prometheus.instance(
distribution, prometheus_url, prometheus_bearer_token
)
else:
logging.error("Looks like proemtheus url is not defined, exiting")
sys.exit(1)
command = (
"./kube-burner index --uuid "
+ str(uuid)
+ " -u "
+ str(prometheus_url)
+ " -t "
+ str(prometheus_bearer_token)
+ " -m "
+ str(metrics_profile)
+ " --start "
+ str(start_time)
+ " --end "
+ str(end_time)
+ " -c "
+ str(config_path)
)
try:
logging.info("Running kube-burner to capture the metrics: %s" % command)
logging.info("UUID for the run: %s" % uuid)
subprocess.run(command, shell=True, universal_newlines=True)
except Exception as e:
logging.error("Failed to run kube-burner, error: %s" % (e))
sys.exit(1)
def alerts(distribution, prometheus_url, prometheus_bearer_token, start_time, end_time, alert_profile):
"""
Scrapes metrics defined in the profile from Prometheus and alerts based on the severity defined
"""
if not prometheus_url:
if distribution == "openshift":
logging.info("Looks like prometheus_url is not defined, trying to use the default instance on the cluster")
prometheus_url, prometheus_bearer_token = prometheus.instance(
distribution, prometheus_url, prometheus_bearer_token
)
else:
logging.error("Looks like proemtheus url is not defined, exiting")
sys.exit(1)
command = (
"./kube-burner check-alerts "
+ " -u "
+ str(prometheus_url)
+ " -t "
+ str(prometheus_bearer_token)
+ " -a "
+ str(alert_profile)
+ " --start "
+ str(start_time)
+ " --end "
+ str(end_time)
)
try:
logging.info("Running kube-burner to capture the metrics: %s" % command)
subprocess.run(command, shell=True, universal_newlines=True)
except Exception as e:
logging.error("Failed to run kube-burner, error: %s" % (e))
sys.exit(1)

Some files were not shown because too many files have changed in this diff Show More