Meetup K8s Dont's

e De kantoor sessie

Brief introduction

 Marco Verleun
» Older than the internet
e Even older than Unix... ;-)
* Engineer at SUE
* Currently working as DevOps engineer for a government agency:
 Gitlab
* Kubernetes clusters

 Many legacy applications

Topics

 Cluster sizing

* Resources, requests and limits
e Swap...

* Pressure

 Probes

Prepare

e Zip download: https://github.com/mverleun/Meetup-Kubernetes-Donts/
archive/master.zip

» git clone https://qgithub.com/mverleun/Meetup-Kubernetes-Donts.qit

https://github.com/mverleun/Meetup-Kubernetes-Donts/archive/master.zip
https://github.com/mverleun/Meetup-Kubernetes-Donts/archive/master.zip
https://github.com/mverleun/Meetup-Kubernetes-Donts/archive/master.zip
https://github.com/mverleun/Meetup-Kubernetes-Donts.git
https://github.com/mverleun/Meetup-Kubernetes-Donts/archive/master.zip
https://github.com/mverleun/Meetup-Kubernetes-Donts/archive/master.zip
https://github.com/mverleun/Meetup-Kubernetes-Donts/archive/master.zip
https://github.com/mverleun/Meetup-Kubernetes-Donts.git

Cluster sizing

e \Which is better?:
A. More nodes with fewer resources each?
B. Fewer nodes with more resources each?

C. Both are equal?

Kubertetris

Let’s play Kubertetris and see...

Just like Tetris we have to make sure that we can deploy somewhere on
the cluster.

We have two clusters. Both have an equal amount of resources but the
number of nodes differ.

We’'ll try to deploy the same applications in the same way.

Two nodes, preloaded

Four nodes, preloaded

Both run the same deployments

 Let’s try to add some more

e First: Two pods of 3 blocks each

Two nodes, preloaded

Four nodes, preloaded

Both run the same deployments

 Let’s try to add some more
* First: Two pods of 3 blocks each

 And now a huge deployment: 5 blocks each

Two nodes, preloaded

Four nodes, preloaded

Both run the same deployments

 Let’s try to add some more
* First: Two pods of 3 blocks each

 And now a huge deployment: 5 blocks each
We have a partial success....

» Bigger is better for now!

 Let’s cordon a server for updates...

Two nodes, preloaded

Two nodes, preloaded

Four nodes, preloaded

Four nodes, preloaded

Both run the same deployments

e Let’s try to add some more
* First: Two pods of 3 blocks each

 And now a huge deployment: 5 blocks each
We have a partial success....

* Bigger is better for now!
* Let’s cordon a server for updates...
 And now smaller seems better for two reasons:
1. All deployments are there

2. No dual deployments om same node

Things to keep In mind

 \WWhen cordoning and draining a node all pods have to be redeployed
somewnhere else;

e \What If:
« Many images have to be downloaded by a single node?
 The resource settings are off? (More later)

o antiAffinity is set preventing pods to run on the same node as other
pods from the same deployment?

Resources Request - Limits

requests: The minimum amount of CPU and/or memory that has to be
available on a a node before a container is deployed.

Limits: The maximum amount of CPU and/or memory that a container is
allowed to use.

In an ideal world these two are equal.

If only 1imits are specified K8s will set requests to the same value (see
above)

If only requests are specified there are no limits... Really?

https://kubernetes.io/docs/concepts/configuration/manage-resources-
containers/#requests-and-limits

 Deploy Nginx pods who do not need memory but do request it

e \Wat a waste...

resources:
Limits:
memory:. 200M1
requests:

memory: 10OO0Mi

e Let's deploy a pod that requests 150M of memory... Next deploy a pod requesting more then 200M.

* Repeat the exercise with pods requesting only 10M, but scale 15 of them in parallel. After a while they’ll
request 150M just as above.

Swap...

Does not exist anymore. Paging is the successor of swap.

But we call it swap....

Swap can lead to Swap Death (Check Wikipedia)

No paging (Swap!) on K8s nodes. Please? Please?? Please???

https://github.com/kubernetes/kubernetes/issues/53533

A hard eviction
threshold has no
grace period, and 1if
observed, the kubelet
Will take 1mmediate
action to reclaim the
associated starved
resource. If a hard
eviction threshold 1s
met, the kubelet
kills the Pod
immediately with no
graceful termination.

Pressure

Node Condition Threshold

https://kubernetes.io/docs/tasks/administer-cluster/out-of-resource/

Reclaiming node level resources

With imagefs (/var/lib/docker??):

* |f nodefs filesystem has met eviction thresholds, kubelet frees up disk space by deleting the
dead Pods and their containers.

* |f imagefs filesystem has met eviction thresholds, kubelet frees up disk space by deleting all
unused images.

Without imagefs:

* |f nodefs filesystem has met eviction thresholds, kubelet frees up disk space in the following
order:

e Delete dead Pods and their containers

* Delete all unused images

https://kubernetes.io/docs/tasks/administer-cluster/out-of-resource/

Probes

 Use probes to determine the health of pods:
 Readyness signals an ingress controller and determines update speed
* Liveness determines if a pod Is restarted
e Several techniques can be used:
e script
e http request

e TCP port

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/

A probe script

#!/bin/bash
function probe log() {
echo "$(date +%D-%T): ${1}" > /proc/1l/fd/1
exit 1
;
Use wget and not curl... wget has easier exit codes!

wget http://localhost:98/6/health -o /dev/null || probe log "Restarting because healt
page 1s not responding”

Debug checks:
Report a NOT ALIVE status 1f the file /tmp/notready does exist:

cat /tmp/notalive > /dev/null 2>&1 && probe log "File /tmp/notalive exists"exit ©

apiVersion: vl
kind: ConfigMap
metadata:
name:. probes
namespace: probes
data:
readinessprobe.sh: |-

#!/bin/bash

exit ©

livenessprobe.sh: |-

#!/bin/bash

exit 0

In a configmap

kubectl create configmap --from-file=/etc/hosts test --dry-run -o yaml

Mounted as a volume

volumeMounts:

- name: probes
mountPath: "/probes”
readOnly: true

volumes:

- name: probes
configMap:

name: probes

Called from K8s

livenessProbe:
periodSeconds: 1
successThreshold: 1
failureThreshold: 2
initialDelaySeconds: 30
timeoutSeconds: 5
exec:
command:
- /bin/bash
- /probes/livenessprobe.sh
readinessProbe:
periodSeconds: 3

successThreshold: 1

Demo

e Take it slowly... One step at a time.
e |tis intentionally slow

e Time for Demo 3

