
Meetup K8s Dont's

• De kantoor sessie

Brief introduction
• Marco Verleun

•Older than the internet

• Even older than Unix… ;-)

• Engineer at SUE

• Currently working as DevOps engineer for a government agency:

•Gitlab

• Kubernetes clusters

•Many legacy applications

Topics

•Cluster sizing

•Resources, requests and limits

• Swap...

• Pressure

• Probes

Prepare

• Zip download: https://github.com/mverleun/Meetup-Kubernetes-Donts/
archive/master.zip

• git clone https://github.com/mverleun/Meetup-Kubernetes-Donts.git

https://github.com/mverleun/Meetup-Kubernetes-Donts/archive/master.zip
https://github.com/mverleun/Meetup-Kubernetes-Donts/archive/master.zip
https://github.com/mverleun/Meetup-Kubernetes-Donts/archive/master.zip
https://github.com/mverleun/Meetup-Kubernetes-Donts.git
https://github.com/mverleun/Meetup-Kubernetes-Donts/archive/master.zip
https://github.com/mverleun/Meetup-Kubernetes-Donts/archive/master.zip
https://github.com/mverleun/Meetup-Kubernetes-Donts/archive/master.zip
https://github.com/mverleun/Meetup-Kubernetes-Donts.git

Cluster sizing

• Which is better?:

A. More nodes with fewer resources each?

B. Fewer nodes with more resources each?

C. Both are equal?

Kubertetris

• Let’s play Kubertetris and see…

• Just like Tetris we have to make sure that we can deploy somewhere on
the cluster.

• We have two clusters. Both have an equal amount of resources but the
number of nodes differ.

• We’ll try to deploy the same applications in the same way.

Two nodes, preloaded

Four nodes, preloaded

Both run the same deployments

• Let’s try to add some more

• First: Two pods of 3 blocks each

Two nodes, preloaded

Four nodes, preloaded

Both run the same deployments

• Let’s try to add some more

• First: Two pods of 3 blocks each

• And now a huge deployment: 5 blocks each

Two nodes, preloaded

Four nodes, preloaded

Both run the same deployments

• Let’s try to add some more

• First: Two pods of 3 blocks each

• And now a huge deployment: 5 blocks each 
We have a partial success….

• Bigger is better for now!

• Let’s cordon a server for updates…

Two nodes, preloaded

Two nodes, preloaded

Four nodes, preloaded

Four nodes, preloaded

Both run the same deployments
• Let’s try to add some more

• First: Two pods of 3 blocks each

• And now a huge deployment: 5 blocks each 
We have a partial success….

• Bigger is better for now!

• Let’s cordon a server for updates…

• And now smaller seems better for two reasons:

1. All deployments are there

2. No dual deployments om same node

Things to keep in mind
• When cordoning and draining a node all pods have to be redeployed

somewhere else:

• What if:

• Many images have to be downloaded by a single node?

• The resource settings are off? (More later)

• antiAffinity is set preventing pods to run on the same node as other
pods from the same deployment?

Resources Request - Limits
• requests: The minimum amount of CPU and/or memory that has to be

available on a a node before a container is deployed.

• limits: The maximum amount of CPU and/or memory that a container is
allowed to use.

• In an ideal world these two are equal.

• If only limits are specified K8s will set requests to the same value (see
above)

• If only requests are specified there are no limits… Really?

• https://kubernetes.io/docs/concepts/configuration/manage-resources-
containers/#requests-and-limits

Demo-1

• Deploy Nginx pods who do not need memory but do request it

• Wat a waste…

Demo-2
...

resources:

 limits:

 memory: 200Mi

 requests:

 memory: 100Mi

…

• Let’s deploy a pod that requests 150M of memory… Next deploy a pod requesting more then 200M.

• Repeat the exercise with pods requesting only 10M, but scale 15 of them in parallel. After a while they’ll
request 150M just as above.

Swap…

• Does not exist anymore. Paging is the successor of swap.

• But we call it swap….

• Swap can lead to Swap Death (Check Wikipedia)

• No paging (Swap!) on K8s nodes. Please? Please?? Please???

• https://github.com/kubernetes/kubernetes/issues/53533

Pressure
A hard eviction
threshold has no
grace period, and if
observed, the kubelet
will take immediate
action to reclaim the
associated starved
resource. If a hard
eviction threshold is
met, the kubelet
kills the Pod
immediately with no
graceful termination.

https://kubernetes.io/docs/tasks/administer-cluster/out-of-resource/

Node Condition Threshold

MemoryPressure memory.available<100Mi

DiskPressure nodefs.available<10%

nodefs.inodesFree<5%

imagefs.available<15%

Reclaiming node level resources
• With imagefs (/var/lib/docker??):

• If nodefs filesystem has met eviction thresholds, kubelet frees up disk space by deleting the
dead Pods and their containers.

• If imagefs filesystem has met eviction thresholds, kubelet frees up disk space by deleting all
unused images.

• Without imagefs:

• If nodefs filesystem has met eviction thresholds, kubelet frees up disk space in the following
order:

• Delete dead Pods and their containers

• Delete all unused images
https://kubernetes.io/docs/tasks/administer-cluster/out-of-resource/

Probes
• Use probes to determine the health of pods:

• Readyness signals an ingress controller and determines update speed

• Liveness determines if a pod is restarted

• Several techniques can be used:

• script

• http request

• TCP port
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/

A probe script
#!/bin/bash

function probe_log() {

 echo "$(date +%D-%T): ${1}" > /proc/1/fd/1

 exit 1

}

Use wget and not curl... wget has easier exit codes!

wget http://localhost:9876/health -o /dev/null || probe_log "Restarting because healt
page is not responding"

Debug checks:

Report a NOT ALIVE status if the file /tmp/notready does exist:

cat /tmp/notalive > /dev/null 2>&1 && probe_log "File /tmp/notalive exists"exit 0

In a configmap
apiVersion: v1

kind: ConfigMap

metadata:

 name: probes

 namespace: probes

data:

 readinessprobe.sh: |-

 #!/bin/bash

...

 exit 0

 livenessprobe.sh: |-

 #!/bin/bash

...

 exit 0

kubectl create configmap --from-file=/etc/hosts test --dry-run -o yaml

Mounted as a volume
 volumeMounts:

 - name: probes

 mountPath: "/probes"

 readOnly: true

 volumes:

 - name: probes

 configMap:

 name: probes

Called from K8s
 livenessProbe:

 periodSeconds: 1

 successThreshold: 1

 failureThreshold: 2

 initialDelaySeconds: 30

 timeoutSeconds: 5

 exec:

 command:

 - /bin/bash

 - /probes/livenessprobe.sh

 readinessProbe:

 periodSeconds: 3

 successThreshold: 1

Demo

• Take it slowly... One step at a time.

• It is intentionally slow

• Time for Demo 3

