Meetup Docker -> K8s

e De huiskamer sessie

Brief introduction

 Marco Verleun
» Older than the internet
e Even older than Unix... ;-)
* Engineer at SUE
* Currently working as DevOps engineer for a government agency:
 Gitlab
* Kubernetes clusters

 Many legacy applications

Topics

 Disclaimer

e Basics of a Pod and nodes

» Basics of ingress traffic, services and pods.
» K8s upgrade strategies and scaling

» Basics of a container

» Best practices according to Google

* Process(es) inside a container

* Logging via stdout

e User ID’s and non-root images

 http(s) redirects

Disclaimer

* |In this workshop we will use older ‘official’ images of Nextcloud.
In no way this workshop is ment to embarrass the creators of these
Images.
Many official images are comparable and the objective of this workshop is
to illustrate how ‘official’ images not always reflect the best practices for
K8s images.

* We will see certain aspects that could affect the functioning of a K8s
cluster. I'm pretty sure that the rules are not 100% complete and are not
always avoidable. Use your own judgement.

Basics of a Pod and Node

Pods overview

[P address

volume

containerized app

Pod 1 Pod 2 Pod 3 Pod 4

Images from: https://kubernetes.io/docs/tutorials/kubernetes-basics/explore/explore-intro/

Node

Pod

volume

containerized app

node processes

Ingress and services to connect to Pods

Clients Kubernetes
Ingress
Controller

Image from: https://www.nginx.com/products/nginx/kubernetes-ingress-controller/

K8s upgrade strategies and scaling

A T~

External Load Balancer External Load Balancer External Load Balancer
Ingress Ingress Ingress

v1 <’ e > V2 e > v2
Y » 1” i g > v
vi < v < e > v2
Requests are forwarded from the During the derYmem of a new The process continues shutting
LB to the Ingress which, in turn, release, a replica of the old down the replicas of the old
forwards them to all the replicas release is shut down and a release and creating those based
of the application. replica of the new release is on the new, until only those
created. Ingress keeps based on the new release are
distributing the traffic to all the running.
replicas running (both old and
new).

Image from: https://technologyconversations.com/2019/09/05/exploring-deployment-strategies-in-kubernetes/

Best practices (according to Google)

* https://cloud.google.com/solutions/best-practices-for-building-containers and https://
www.weave.works/blog/kubernetes-best-practices

* A few examples:
* Use a non-root user inside the container
* Make the file system read-only
» One process per container
* Don’t restart on failure. Crash cleanly instead
* Logging via stdout and stderr

* Readiness and Liveness Probes are your friend, no docker health

https://cloud.google.com/solutions/best-practices-for-building-containers
https://www.weave.works/blog/kubernetes-best-practices
https://www.weave.works/blog/kubernetes-best-practices
https://cloud.google.com/solutions/best-practices-for-building-containers
https://www.weave.works/blog/kubernetes-best-practices
https://www.weave.works/blog/kubernetes-best-practices

Docker images

Many well known products provide ‘official’ images.
These images do not always adhere to the best practices.

Sometimes it’s really challenging to properly deploy images in a K8s
environment.

Don’t simply do It because you can, take some time to properly
iInvestigate the pro’s and con’s of running an app in K8s.

Especially legacy applications can be challenging (We deployed pods that
can take up to two hours to startup and that require 6 Gb of RAM each...)

Dockerfile

 Let’s have a look at a Dockerfile from an ‘official’ image.

e [tis taken from: https://github.com/nextcloud/docker

* The full version is found here: https://github.com/nextcloud/docker/blob/
master/17.0/apache/Dockerfile, we’ll explore snippets

https://github.com/nextcloud/docker
https://github.com/nextcloud/docker/blob/master/17.0/apache/Dockerfile
https://github.com/nextcloud/docker/blob/master/17.0/apache/Dockerfile
https://github.com/nextcloud/docker/blob/master/17.0/apache/Dockerfile
https://github.com/nextcloud/docker
https://github.com/nextcloud/docker/blob/master/17.0/apache/Dockerfile
https://github.com/nextcloud/docker/blob/master/17.0/apache/Dockerfile
https://github.com/nextcloud/docker/blob/master/17.0/apache/Dockerfile

Dockerfile first lines

FROM php:7.3-apache-buster

entrypoint.sh and cron.sh dependencies
RUN set -ex; \
\
apt-get update; \
apt-get install -y --no-install-recommends \
rsync \
bzip2 \
busybox-static \
\
rm -rf /var/lib/apt/lists/*; \
\

mkdir -p /var/spool/cron/crontabs; \

echo '*/5 * * *x * php -f /var/www/html/cron.php' > /var/spool/cron/crontabs/www-data

Dockerfile first lines

FROM php:7.3-apache-buster

entrypoint.sh and cron.sh dependencies
RUN set -ex; \
\
apt-get update; \
apt-get install -y --no-install-recommends \
rsync \
bzip2 \
busybox-static \
;o\
rm -rf /var/lib/apt/lists/*; \

\

mkdir -p /var/spool/cron/crontabs; \

echo "*/5 * * * * php -f /var/www/html/cron.php' > /var/spool/cron/crontabs/www-data

Dockerfile snippets

RUN set -ex; \
\

curl -fsSL -0 nextcloud.tar.bz2 \

"https://download.nextcloud.com/server/releases/nextcloud-${NEXTCLOUD VERSION}.tar.bz2"; \

tar -xjf nextcloud.tar.bz2 -C ;o\
mkdir -p nextcloud/data; \
mkdir -p / nextcloud/custom apps; \

COPY *.sh upgrade.exclude /

COPY config/* nextcloud/config/

Dockerfile ENTRYPOINT and CMD

ENTRYPOINT ["/entrypoint.sh"]

CMD [“apache2-foreground”]

* The script entrypoint.sh is quite extensive and is worth reading online: https://github.com/nextcloud/docker/blob/master/17.0/
apache/entrypoint.sh

* |n short, it installs from /usr/src to /var/www/html during the first time a container is started. It checks versions to see if an upgrade
IS necessary.

 The last line is great. It replaces the process of the current PID (1) with the content of the CMD line, in this case apache will run as
process 1 by default.

« See also: https://success.docker.com/article/use-a-script-to-initialize-stateful-container-data

exec ||$@u

https://github.com/nextcloud/docker/blob/master/17.0/apache/entrypoint.sh
https://github.com/nextcloud/docker/blob/master/17.0/apache/entrypoint.sh
https://success.docker.com/article/use-a-script-to-initialize-stateful-container-data
https://github.com/nextcloud/docker/blob/master/17.0/apache/entrypoint.sh
https://github.com/nextcloud/docker/blob/master/17.0/apache/entrypoint.sh
https://success.docker.com/article/use-a-script-to-initialize-stateful-container-data

Download demo files from GitHub

1. Clone the repo: git clone https://github.com/mverleun/Meetup-Docker-
K8s-Images.qit

2. Download as zip: https://github.com/mverleun/Meetup-Docker-K8s-
Images/archive/master.zip

https://github.com/mverleun/Meetup-Docker-K8s-Images.git
https://github.com/mverleun/Meetup-Docker-K8s-Images.git
https://github.com/mverleun/Meetup-Docker-K8s-Images/archive/master.zip
https://github.com/mverleun/Meetup-Docker-K8s-Images/archive/master.zip
https://github.com/mverleun/Meetup-Docker-K8s-Images/archive/master.zip
https://github.com/mverleun/Meetup-Docker-K8s-Images.git
https://github.com/mverleun/Meetup-Docker-K8s-Images.git
https://github.com/mverleun/Meetup-Docker-K8s-Images/archive/master.zip
https://github.com/mverleun/Meetup-Docker-K8s-Images/archive/master.zip
https://github.com/mverleun/Meetup-Docker-K8s-Images/archive/master.zip

Explore behaviour with docker-compose example.

1.cd Demo-1

2.cat docker-compose.yml
3.docker-compose up db

4 .docker-compose up nc-12

5. Open a browser for http://127.0.0.1:8012 and configure Nextcloud

6.docker-compose up nc-13

/. Open a browser for http://127.0.0.1:8013 and watch the logging

8. Refresh the browser in the Nextcloud 12 session. What is happening? And more important why? What are the
implications? More on this later...

9. Cleanup with docker-compose down -v

Note: Take it slow and experience everything. It’s not about the destination but also the journey.

http://127.0.0.1:8012
http://127.0.0.1:8013
http://127.0.0.1:8012
http://127.0.0.1:8013

non-root containers

* Are best practices and strongly recommended
* Could require a bit of rebuilding using a Dockerfile

* Let’s explore it step by step
e docker run --rm -1t --name nc-13 nextcloud:13.0.1

e docker exec -1t nc-13 bash
* Execute the following commands: id; ss -antp
* It shows that you’ve got root permissions and that apache is listening on port 80
* Now try: apt update
* Ohhh... That’s scary...

* Stop the container by pressing Ctrl-C

non-root containers attempt 1

* This should fail and it will, so don’t try it in production. ;-)

e Start as a user with UID 33:

e docker run --rm -1t --name nc-13 --user 33
nextcloud:13.0.1

 Notice that the container will not start for obvious reasons.

e Port 80 Is reserved for root

non-root containers Dockerfile

e Check the content of Demo-2 directory

» Dockerfile:

FROM nextcloud:13.0.1

USER root

COPY root /

USER 33

* root/etc/apache2/ports.conf

Listen 8080

<IfModule ssl module>
Listen 8443

</IfModule>

<IfModule mod gnutls.c>
Listen 843

</IfModule>

Build image and test

* Once more the same commands
edocker build -t nextcloud:13.0.1-non-root
edocker run --rm -1t --name nc-13 nextcloud:13.0.1-non-root
edocker exec -1t nc-13 bash
» Execute the following commands: id; ss -antp
* Now try: apt update
* Ohhh... That’s nice.

* Note when you start with the proper port mapping you can do the same as before.

Logging via stdout and stderr

» Let’s extend the Dockerfile slightly, see files in Demo-3
FROM nextcloud:13.0.1-non-root

USER root

COPY root /

USER 33

CMD ["/i1nit-script.sh", “apachel2-foreground"]

Logging via stdout and stderr

* The script contains:
#!/bin/bash
function stdout() {
echo "${1}" > /proc/1/fd/1
}
function stderr () {
echo "${1}" > /proc/1/fd/2
}
echo This is a init script with a long delay.
for 1 in {1..30}; do
stdout "${i}"
sleep 1
done
stdout "We could have done something usefull as well"

exec ll$@ll

Logging via stdout and stderr

 Build a new image and run It;
edocker build -t nextcloud:13.0.1-non-root-logging .

e docker run --rm -1t --name nc-13 nextcloud:13.0.1-
non-root-logging

* For proc #1 not always necessary, for other processes a nice way to write
to stdout and stderr.

 File permissions of /proc/1/fd/* apply!

Readiness and liveness probes and more

* |Instead of using the Docker health check K8s uses several probes.
* Liveness probe performs checks to decide if a container restart is required
* Readiness probe is used to configure the ingress controller
* Other probes are available as well
* These probes are often http requests to specific webpages (/healthz etc)
» Shell scripts can be used as well. Either add scripts using configmaps or add them to an image.
* This is one of the reasons that Docker health checks are discouraged.

e Check the files in Demo-4

Downgrading Nextcloud? And what happend?

 Back to Demo-1, repeat the steps but then stop Nextcloud version 12 and
start it again...

e Qutch.... No canary deployments or rolling updates....
This would require a green/blue deployment with two databases etc. if a

fallback is required...
But even then, the volumes have to be separated as well...

Stop here: What happend during the upgrade earlier?

Downgrading Nextcloud? And what happend?

 Back to Demo-1, repeat the steps but then stop Nextcloud version 12 and start it again...

 Qutch.... No canary deployments or rolling updates....

This would require a green/blue deployment with two databases etc. if a fallback is
required...

But even then, the volumes have to be separated as well...

Bottom line: Nextcloud installs php code during the first run and configures the database.
The php code is installed in a shared volume, otherwise collaboration between containers
will fall...

When upgrading Nextcloud the code in de the volume is updated and Nextcloud 12 is
serving Nextcloud 13 code, but still has Nextcloud 12 vulnerabilities...

* Please put version dependent code (PHP, Python etc) in the image during a docker build if
possible.

Resource limits

* |s one of the best practices for K8s.
e If you hit a CPU limit things will slow down.
* If you hit a memory limit things will crash.
* No limit settings means that the node determines the limits...

e Java requires tuning with the Xmx and Xms parameters, you have to make
sure that the amount of memory allowed is greater than the the Xmx value +
the overhead from other processes...

edocker stats, docker run -m .. -c .., docker update

Pudding time

 What about these best practices?:
* One process per container
e Don’t restart on failure. Crash cleanly instead
docker stats
docker run -m 64M - -name nc-13 --rm -1t -p 8080:80 nextcloud:13.0.4
docker exec -1t nc-13 top

siege -c 10 -r 10 http://127.0.0.1:8080

siege -c 100 -r 10 http://127.0.0.1:8080

* Please explain...

e Siege: https://www.joedog.org/siege-home/.
(brew install siege, apt-get install -y siege)

http://127.0.0.1:8080
http://127.0.0.1:8080
https://www.joedog.org/siege-home/
http://127.0.0.1:8080
http://127.0.0.1:8080
https://www.joedog.org/siege-home/

This one iIs easier (I think)

edocker stats

edocker run -m 512M --rm -1t --name demo busybox
tail -f /dev/zero

Versus:

edocker run -m 512M --rm -1t --name demo busybox tail -f /
dev/zero

 Where is the crash?

