Files
krkn/run_kraken.py
Naga Ravi Chaitanya Elluri bc863fa01f Add support to check for critical alerts
This commit enables users to opt in to check for critical alerts firing
in the cluster post chaos at the end of each scenario. Chaos scenario is
considered as failed if the cluster is unhealthy in which case user can
start debugging to fix and harden respective areas.

Fixes https://github.com/redhat-chaos/krkn/issues/410
2023-05-03 16:14:13 -04:00

420 lines
18 KiB
Python

#!/usr/bin/env python
import os
import sys
import yaml
import logging
import optparse
import pyfiglet
import uuid
import time
import kraken.kubernetes.client as kubecli
import kraken.litmus.common_litmus as common_litmus
import kraken.time_actions.common_time_functions as time_actions
import kraken.performance_dashboards.setup as performance_dashboards
import kraken.pod_scenarios.setup as pod_scenarios
import kraken.namespace_actions.common_namespace_functions as namespace_actions
import kraken.shut_down.common_shut_down_func as shut_down
import kraken.node_actions.run as nodeaction
import kraken.managedcluster_scenarios.run as managedcluster_scenarios
import kraken.kube_burner.client as kube_burner
import kraken.zone_outage.actions as zone_outages
import kraken.application_outage.actions as application_outage
import kraken.pvc.pvc_scenario as pvc_scenario
import kraken.network_chaos.actions as network_chaos
import kraken.arcaflow_plugin as arcaflow_plugin
import server as server
import kraken.prometheus.client as promcli
from kraken import plugins
KUBE_BURNER_URL = (
"https://github.com/cloud-bulldozer/kube-burner/"
"releases/download/v{version}/kube-burner-{version}-Linux-x86_64.tar.gz"
)
KUBE_BURNER_VERSION = "0.9.1"
# Main function
def main(cfg):
# Start kraken
print(pyfiglet.figlet_format("kraken"))
logging.info("Starting kraken")
# Parse and read the config
if os.path.isfile(cfg):
with open(cfg, "r") as f:
config = yaml.full_load(f)
global kubeconfig_path, wait_duration
distribution = config["kraken"].get("distribution", "openshift")
kubeconfig_path = os.path.expanduser(
config["kraken"].get("kubeconfig_path", "")
)
chaos_scenarios = config["kraken"].get("chaos_scenarios", [])
publish_running_status = config["kraken"].get("publish_kraken_status", False)
port = config["kraken"].get("port")
signal_address = config["kraken"].get("signal_address")
run_signal = config["kraken"].get("signal_state", "RUN")
litmus_install = config["kraken"].get("litmus_install", True)
litmus_version = config["kraken"].get("litmus_version", "v1.9.1")
litmus_uninstall = config["kraken"].get("litmus_uninstall", False)
litmus_uninstall_before_run = config["kraken"].get(
"litmus_uninstall_before_run", True
)
wait_duration = config["tunings"].get("wait_duration", 60)
iterations = config["tunings"].get("iterations", 1)
daemon_mode = config["tunings"].get("daemon_mode", False)
deploy_performance_dashboards = config["performance_monitoring"].get(
"deploy_dashboards", False
)
dashboard_repo = config["performance_monitoring"].get(
"repo", "https://github.com/cloud-bulldozer/performance-dashboards.git"
)
capture_metrics = config["performance_monitoring"].get("capture_metrics", False)
kube_burner_url = config["performance_monitoring"].get(
"kube_burner_binary_url",
KUBE_BURNER_URL.format(version=KUBE_BURNER_VERSION),
)
config_path = config["performance_monitoring"].get(
"config_path", "config/kube_burner.yaml"
)
metrics_profile = config["performance_monitoring"].get(
"metrics_profile_path", "config/metrics-aggregated.yaml"
)
prometheus_url = config["performance_monitoring"].get("prometheus_url", "")
prometheus_bearer_token = config["performance_monitoring"].get(
"prometheus_bearer_token", ""
)
run_uuid = config["performance_monitoring"].get("uuid", "")
enable_alerts = config["performance_monitoring"].get("enable_alerts", False)
alert_profile = config["performance_monitoring"].get("alert_profile", "")
check_critical_alerts = config["performance_monitoring"].get("check_critical_alerts", False)
# Initialize clients
if not os.path.isfile(kubeconfig_path):
logging.error(
"Cannot read the kubeconfig file at %s, please check" % kubeconfig_path
)
sys.exit(1)
logging.info("Initializing client to talk to the Kubernetes cluster")
os.environ["KUBECONFIG"] = str(kubeconfig_path)
kubecli.initialize_clients(kubeconfig_path)
# find node kraken might be running on
kubecli.find_kraken_node()
# Set up kraken url to track signal
if not 0 <= int(port) <= 65535:
logging.error("%s isn't a valid port number, please check" % (port))
sys.exit(1)
if not signal_address:
logging.error("Please set the signal address in the config")
sys.exit(1)
address = (signal_address, port)
# If publish_running_status is False this should keep us going
# in our loop below
if publish_running_status:
server_address = address[0]
port = address[1]
logging.info(
"Publishing kraken status at http://%s:%s" % (server_address, port)
)
logging.info(
"Publishing kraken status at http://%s:%s" % (server_address, port)
)
server.start_server(address, run_signal)
# Cluster info
logging.info("Fetching cluster info")
cv = kubecli.get_clusterversion_string()
if cv != "":
logging.info(cv)
else:
logging.info("Cluster version CRD not detected, skipping")
logging.info("Server URL: %s" % kubecli.get_host())
# Deploy performance dashboards
if deploy_performance_dashboards:
performance_dashboards.setup(dashboard_repo, distribution)
# Generate uuid for the run
if run_uuid:
logging.info(
"Using the uuid defined by the user for the run: %s" % run_uuid
)
else:
run_uuid = str(uuid.uuid4())
logging.info("Generated a uuid for the run: %s" % run_uuid)
# Initialize the start iteration to 0
iteration = 0
# Set the number of iterations to loop to infinity if daemon mode is
# enabled or else set it to the provided iterations count in the config
if daemon_mode:
logging.info("Daemon mode enabled, kraken will cause chaos forever\n")
logging.info("Ignoring the iterations set")
iterations = float("inf")
else:
logging.info(
"Daemon mode not enabled, will run through %s iterations\n"
% str(iterations)
)
iterations = int(iterations)
failed_post_scenarios = []
# Capture the start time
start_time = int(time.time())
litmus_installed = False
# Loop to run the chaos starts here
while int(iteration) < iterations and run_signal != "STOP":
# Inject chaos scenarios specified in the config
logging.info("Executing scenarios for iteration " + str(iteration))
if chaos_scenarios:
for scenario in chaos_scenarios:
if publish_running_status:
run_signal = server.get_status(address)
if run_signal == "PAUSE":
while publish_running_status and run_signal == "PAUSE":
logging.info(
"Pausing Kraken run, waiting for %s seconds"
" and will re-poll signal" % str(wait_duration)
)
time.sleep(wait_duration)
run_signal = server.get_status(address)
if run_signal == "STOP":
logging.info("Received STOP signal; ending Kraken run")
break
scenario_type = list(scenario.keys())[0]
scenarios_list = scenario[scenario_type]
if scenarios_list:
# Inject pod chaos scenarios specified in the config
if scenario_type == "pod_scenarios":
logging.error(
"Pod scenarios have been removed, please use "
"plugin_scenarios with the "
"kill-pods configuration instead."
)
sys.exit(1)
elif scenario_type == "arcaflow_scenarios":
failed_post_scenarios = arcaflow_plugin.run(
scenarios_list, kubeconfig_path
)
elif scenario_type == "plugin_scenarios":
failed_post_scenarios = plugins.run(
scenarios_list,
kubeconfig_path,
failed_post_scenarios,
wait_duration,
)
elif scenario_type == "container_scenarios":
logging.info("Running container scenarios")
failed_post_scenarios = pod_scenarios.container_run(
kubeconfig_path,
scenarios_list,
config,
failed_post_scenarios,
wait_duration,
)
# Inject node chaos scenarios specified in the config
elif scenario_type == "node_scenarios":
logging.info("Running node scenarios")
nodeaction.run(scenarios_list, config, wait_duration)
# Inject managedcluster chaos scenarios specified in the config
elif scenario_type == "managedcluster_scenarios":
logging.info("Running managedcluster scenarios")
managedcluster_scenarios.run(
scenarios_list, config, wait_duration
)
# Inject time skew chaos scenarios specified
# in the config
elif scenario_type == "time_scenarios":
if distribution == "openshift":
logging.info("Running time skew scenarios")
time_actions.run(scenarios_list, config, wait_duration)
else:
logging.error(
"Litmus scenarios are currently "
"supported only on openshift"
)
sys.exit(1)
# Inject litmus based chaos scenarios
elif scenario_type == "litmus_scenarios":
if distribution == "openshift":
logging.info("Running litmus scenarios")
litmus_namespace = "litmus"
if litmus_install:
# Remove Litmus resources
# before running the scenarios
common_litmus.delete_chaos(litmus_namespace)
common_litmus.delete_chaos_experiments(
litmus_namespace
)
if litmus_uninstall_before_run:
common_litmus.uninstall_litmus(
litmus_version, litmus_namespace
)
common_litmus.install_litmus(
litmus_version, litmus_namespace
)
common_litmus.deploy_all_experiments(
litmus_version, litmus_namespace
)
litmus_installed = True
common_litmus.run(
scenarios_list,
config,
litmus_uninstall,
wait_duration,
litmus_namespace,
)
else:
logging.error(
"Litmus scenarios are currently "
"only supported on openshift"
)
sys.exit(1)
# Inject cluster shutdown scenarios
elif scenario_type == "cluster_shut_down_scenarios":
shut_down.run(scenarios_list, config, wait_duration)
# Inject namespace chaos scenarios
elif scenario_type == "namespace_scenarios":
logging.info("Running namespace scenarios")
namespace_actions.run(
scenarios_list,
config,
wait_duration,
failed_post_scenarios,
kubeconfig_path,
)
# Inject zone failures
elif scenario_type == "zone_outages":
logging.info("Inject zone outages")
zone_outages.run(scenarios_list, config, wait_duration)
# Application outages
elif scenario_type == "application_outages":
logging.info("Injecting application outage")
application_outage.run(
scenarios_list, config, wait_duration
)
# PVC scenarios
elif scenario_type == "pvc_scenarios":
logging.info("Running PVC scenario")
pvc_scenario.run(scenarios_list, config)
# Network scenarios
elif scenario_type == "network_chaos":
logging.info("Running Network Chaos")
network_chaos.run(scenarios_list, config, wait_duration)
# Check for critical alerts when enabled
if check_critical_alerts:
logging.info("Checking for critical alerts firing post choas")
promcli.initialize_prom_client(distribution, prometheus_url, prometheus_bearer_token)
query = r"""ALERTS{severity="critical"}"""
critical_alerts = promcli.process_prom_query(query)
critical_alerts_count = len(critical_alerts)
if critical_alerts_count > 0:
logging.error("Critical alerts are firing: %s", critical_alerts)
logging.error("Please check, exiting")
sys.exit(1)
else:
logging.info("No critical alerts are firing!!")
iteration += 1
logging.info("")
# Capture the end time
end_time = int(time.time())
# Capture metrics for the run
if capture_metrics:
logging.info("Capturing metrics")
kube_burner.setup(kube_burner_url)
kube_burner.scrape_metrics(
distribution,
run_uuid,
prometheus_url,
prometheus_bearer_token,
start_time,
end_time,
config_path,
metrics_profile,
)
# Check for the alerts specified
if enable_alerts:
logging.info("Alerts checking is enabled")
kube_burner.setup(kube_burner_url)
if alert_profile:
kube_burner.alerts(
distribution,
prometheus_url,
prometheus_bearer_token,
start_time,
end_time,
alert_profile,
)
else:
logging.error("Alert profile is not defined")
sys.exit(1)
if litmus_uninstall and litmus_installed:
common_litmus.delete_chaos(litmus_namespace)
common_litmus.delete_chaos_experiments(litmus_namespace)
common_litmus.uninstall_litmus(litmus_version, litmus_namespace)
if failed_post_scenarios:
logging.error(
"Post scenarios are still failing at the end of all iterations"
)
sys.exit(1)
run_dir = os.getcwd() + "/kraken.report"
logging.info(
"Successfully finished running Kraken. UUID for the run: "
"%s. Report generated at %s. Exiting" % (run_uuid, run_dir)
)
else:
logging.error("Cannot find a config at %s, please check" % (cfg))
sys.exit(1)
if __name__ == "__main__":
# Initialize the parser to read the config
parser = optparse.OptionParser()
parser.add_option(
"-c",
"--config",
dest="cfg",
help="config location",
default="config/config.yaml",
)
(options, args) = parser.parse_args()
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(message)s",
handlers=[
logging.FileHandler("kraken.report", mode="w"),
logging.StreamHandler(),
],
)
if options.cfg is None:
logging.error("Please check if you have passed the config")
sys.exit(1)
else:
main(options.cfg)