mirror of
https://github.com/krkn-chaos/krkn.git
synced 2026-02-14 09:59:59 +00:00
This commit enables users to opt in to check for critical alerts firing in the cluster post chaos at the end of each scenario. Chaos scenario is considered as failed if the cluster is unhealthy in which case user can start debugging to fix and harden respective areas. Fixes https://github.com/redhat-chaos/krkn/issues/410
420 lines
18 KiB
Python
420 lines
18 KiB
Python
#!/usr/bin/env python
|
|
|
|
import os
|
|
import sys
|
|
import yaml
|
|
import logging
|
|
import optparse
|
|
import pyfiglet
|
|
import uuid
|
|
import time
|
|
import kraken.kubernetes.client as kubecli
|
|
import kraken.litmus.common_litmus as common_litmus
|
|
import kraken.time_actions.common_time_functions as time_actions
|
|
import kraken.performance_dashboards.setup as performance_dashboards
|
|
import kraken.pod_scenarios.setup as pod_scenarios
|
|
import kraken.namespace_actions.common_namespace_functions as namespace_actions
|
|
import kraken.shut_down.common_shut_down_func as shut_down
|
|
import kraken.node_actions.run as nodeaction
|
|
import kraken.managedcluster_scenarios.run as managedcluster_scenarios
|
|
import kraken.kube_burner.client as kube_burner
|
|
import kraken.zone_outage.actions as zone_outages
|
|
import kraken.application_outage.actions as application_outage
|
|
import kraken.pvc.pvc_scenario as pvc_scenario
|
|
import kraken.network_chaos.actions as network_chaos
|
|
import kraken.arcaflow_plugin as arcaflow_plugin
|
|
import server as server
|
|
import kraken.prometheus.client as promcli
|
|
from kraken import plugins
|
|
|
|
KUBE_BURNER_URL = (
|
|
"https://github.com/cloud-bulldozer/kube-burner/"
|
|
"releases/download/v{version}/kube-burner-{version}-Linux-x86_64.tar.gz"
|
|
)
|
|
KUBE_BURNER_VERSION = "0.9.1"
|
|
|
|
|
|
# Main function
|
|
def main(cfg):
|
|
# Start kraken
|
|
print(pyfiglet.figlet_format("kraken"))
|
|
logging.info("Starting kraken")
|
|
|
|
# Parse and read the config
|
|
if os.path.isfile(cfg):
|
|
with open(cfg, "r") as f:
|
|
config = yaml.full_load(f)
|
|
global kubeconfig_path, wait_duration
|
|
distribution = config["kraken"].get("distribution", "openshift")
|
|
kubeconfig_path = os.path.expanduser(
|
|
config["kraken"].get("kubeconfig_path", "")
|
|
)
|
|
chaos_scenarios = config["kraken"].get("chaos_scenarios", [])
|
|
publish_running_status = config["kraken"].get("publish_kraken_status", False)
|
|
port = config["kraken"].get("port")
|
|
signal_address = config["kraken"].get("signal_address")
|
|
run_signal = config["kraken"].get("signal_state", "RUN")
|
|
litmus_install = config["kraken"].get("litmus_install", True)
|
|
litmus_version = config["kraken"].get("litmus_version", "v1.9.1")
|
|
litmus_uninstall = config["kraken"].get("litmus_uninstall", False)
|
|
litmus_uninstall_before_run = config["kraken"].get(
|
|
"litmus_uninstall_before_run", True
|
|
)
|
|
wait_duration = config["tunings"].get("wait_duration", 60)
|
|
iterations = config["tunings"].get("iterations", 1)
|
|
daemon_mode = config["tunings"].get("daemon_mode", False)
|
|
deploy_performance_dashboards = config["performance_monitoring"].get(
|
|
"deploy_dashboards", False
|
|
)
|
|
dashboard_repo = config["performance_monitoring"].get(
|
|
"repo", "https://github.com/cloud-bulldozer/performance-dashboards.git"
|
|
)
|
|
capture_metrics = config["performance_monitoring"].get("capture_metrics", False)
|
|
kube_burner_url = config["performance_monitoring"].get(
|
|
"kube_burner_binary_url",
|
|
KUBE_BURNER_URL.format(version=KUBE_BURNER_VERSION),
|
|
)
|
|
config_path = config["performance_monitoring"].get(
|
|
"config_path", "config/kube_burner.yaml"
|
|
)
|
|
metrics_profile = config["performance_monitoring"].get(
|
|
"metrics_profile_path", "config/metrics-aggregated.yaml"
|
|
)
|
|
prometheus_url = config["performance_monitoring"].get("prometheus_url", "")
|
|
prometheus_bearer_token = config["performance_monitoring"].get(
|
|
"prometheus_bearer_token", ""
|
|
)
|
|
run_uuid = config["performance_monitoring"].get("uuid", "")
|
|
enable_alerts = config["performance_monitoring"].get("enable_alerts", False)
|
|
alert_profile = config["performance_monitoring"].get("alert_profile", "")
|
|
check_critical_alerts = config["performance_monitoring"].get("check_critical_alerts", False)
|
|
|
|
# Initialize clients
|
|
if not os.path.isfile(kubeconfig_path):
|
|
logging.error(
|
|
"Cannot read the kubeconfig file at %s, please check" % kubeconfig_path
|
|
)
|
|
sys.exit(1)
|
|
logging.info("Initializing client to talk to the Kubernetes cluster")
|
|
os.environ["KUBECONFIG"] = str(kubeconfig_path)
|
|
kubecli.initialize_clients(kubeconfig_path)
|
|
|
|
# find node kraken might be running on
|
|
kubecli.find_kraken_node()
|
|
|
|
# Set up kraken url to track signal
|
|
if not 0 <= int(port) <= 65535:
|
|
logging.error("%s isn't a valid port number, please check" % (port))
|
|
sys.exit(1)
|
|
if not signal_address:
|
|
logging.error("Please set the signal address in the config")
|
|
sys.exit(1)
|
|
address = (signal_address, port)
|
|
|
|
# If publish_running_status is False this should keep us going
|
|
# in our loop below
|
|
if publish_running_status:
|
|
server_address = address[0]
|
|
port = address[1]
|
|
logging.info(
|
|
"Publishing kraken status at http://%s:%s" % (server_address, port)
|
|
)
|
|
logging.info(
|
|
"Publishing kraken status at http://%s:%s" % (server_address, port)
|
|
)
|
|
server.start_server(address, run_signal)
|
|
|
|
# Cluster info
|
|
logging.info("Fetching cluster info")
|
|
cv = kubecli.get_clusterversion_string()
|
|
if cv != "":
|
|
logging.info(cv)
|
|
else:
|
|
logging.info("Cluster version CRD not detected, skipping")
|
|
|
|
logging.info("Server URL: %s" % kubecli.get_host())
|
|
|
|
# Deploy performance dashboards
|
|
if deploy_performance_dashboards:
|
|
performance_dashboards.setup(dashboard_repo, distribution)
|
|
|
|
# Generate uuid for the run
|
|
if run_uuid:
|
|
logging.info(
|
|
"Using the uuid defined by the user for the run: %s" % run_uuid
|
|
)
|
|
else:
|
|
run_uuid = str(uuid.uuid4())
|
|
logging.info("Generated a uuid for the run: %s" % run_uuid)
|
|
|
|
# Initialize the start iteration to 0
|
|
iteration = 0
|
|
|
|
# Set the number of iterations to loop to infinity if daemon mode is
|
|
# enabled or else set it to the provided iterations count in the config
|
|
if daemon_mode:
|
|
logging.info("Daemon mode enabled, kraken will cause chaos forever\n")
|
|
logging.info("Ignoring the iterations set")
|
|
iterations = float("inf")
|
|
else:
|
|
logging.info(
|
|
"Daemon mode not enabled, will run through %s iterations\n"
|
|
% str(iterations)
|
|
)
|
|
iterations = int(iterations)
|
|
|
|
failed_post_scenarios = []
|
|
|
|
# Capture the start time
|
|
start_time = int(time.time())
|
|
litmus_installed = False
|
|
|
|
# Loop to run the chaos starts here
|
|
while int(iteration) < iterations and run_signal != "STOP":
|
|
# Inject chaos scenarios specified in the config
|
|
logging.info("Executing scenarios for iteration " + str(iteration))
|
|
if chaos_scenarios:
|
|
for scenario in chaos_scenarios:
|
|
if publish_running_status:
|
|
run_signal = server.get_status(address)
|
|
if run_signal == "PAUSE":
|
|
while publish_running_status and run_signal == "PAUSE":
|
|
logging.info(
|
|
"Pausing Kraken run, waiting for %s seconds"
|
|
" and will re-poll signal" % str(wait_duration)
|
|
)
|
|
time.sleep(wait_duration)
|
|
run_signal = server.get_status(address)
|
|
if run_signal == "STOP":
|
|
logging.info("Received STOP signal; ending Kraken run")
|
|
break
|
|
scenario_type = list(scenario.keys())[0]
|
|
scenarios_list = scenario[scenario_type]
|
|
if scenarios_list:
|
|
# Inject pod chaos scenarios specified in the config
|
|
if scenario_type == "pod_scenarios":
|
|
logging.error(
|
|
"Pod scenarios have been removed, please use "
|
|
"plugin_scenarios with the "
|
|
"kill-pods configuration instead."
|
|
)
|
|
sys.exit(1)
|
|
elif scenario_type == "arcaflow_scenarios":
|
|
failed_post_scenarios = arcaflow_plugin.run(
|
|
scenarios_list, kubeconfig_path
|
|
)
|
|
|
|
elif scenario_type == "plugin_scenarios":
|
|
failed_post_scenarios = plugins.run(
|
|
scenarios_list,
|
|
kubeconfig_path,
|
|
failed_post_scenarios,
|
|
wait_duration,
|
|
)
|
|
elif scenario_type == "container_scenarios":
|
|
logging.info("Running container scenarios")
|
|
failed_post_scenarios = pod_scenarios.container_run(
|
|
kubeconfig_path,
|
|
scenarios_list,
|
|
config,
|
|
failed_post_scenarios,
|
|
wait_duration,
|
|
)
|
|
|
|
# Inject node chaos scenarios specified in the config
|
|
elif scenario_type == "node_scenarios":
|
|
logging.info("Running node scenarios")
|
|
nodeaction.run(scenarios_list, config, wait_duration)
|
|
|
|
# Inject managedcluster chaos scenarios specified in the config
|
|
elif scenario_type == "managedcluster_scenarios":
|
|
logging.info("Running managedcluster scenarios")
|
|
managedcluster_scenarios.run(
|
|
scenarios_list, config, wait_duration
|
|
)
|
|
|
|
# Inject time skew chaos scenarios specified
|
|
# in the config
|
|
elif scenario_type == "time_scenarios":
|
|
if distribution == "openshift":
|
|
logging.info("Running time skew scenarios")
|
|
time_actions.run(scenarios_list, config, wait_duration)
|
|
else:
|
|
logging.error(
|
|
"Litmus scenarios are currently "
|
|
"supported only on openshift"
|
|
)
|
|
sys.exit(1)
|
|
|
|
# Inject litmus based chaos scenarios
|
|
elif scenario_type == "litmus_scenarios":
|
|
if distribution == "openshift":
|
|
logging.info("Running litmus scenarios")
|
|
litmus_namespace = "litmus"
|
|
if litmus_install:
|
|
# Remove Litmus resources
|
|
# before running the scenarios
|
|
common_litmus.delete_chaos(litmus_namespace)
|
|
common_litmus.delete_chaos_experiments(
|
|
litmus_namespace
|
|
)
|
|
if litmus_uninstall_before_run:
|
|
common_litmus.uninstall_litmus(
|
|
litmus_version, litmus_namespace
|
|
)
|
|
common_litmus.install_litmus(
|
|
litmus_version, litmus_namespace
|
|
)
|
|
common_litmus.deploy_all_experiments(
|
|
litmus_version, litmus_namespace
|
|
)
|
|
litmus_installed = True
|
|
common_litmus.run(
|
|
scenarios_list,
|
|
config,
|
|
litmus_uninstall,
|
|
wait_duration,
|
|
litmus_namespace,
|
|
)
|
|
else:
|
|
logging.error(
|
|
"Litmus scenarios are currently "
|
|
"only supported on openshift"
|
|
)
|
|
sys.exit(1)
|
|
|
|
# Inject cluster shutdown scenarios
|
|
elif scenario_type == "cluster_shut_down_scenarios":
|
|
shut_down.run(scenarios_list, config, wait_duration)
|
|
|
|
# Inject namespace chaos scenarios
|
|
elif scenario_type == "namespace_scenarios":
|
|
logging.info("Running namespace scenarios")
|
|
namespace_actions.run(
|
|
scenarios_list,
|
|
config,
|
|
wait_duration,
|
|
failed_post_scenarios,
|
|
kubeconfig_path,
|
|
)
|
|
|
|
# Inject zone failures
|
|
elif scenario_type == "zone_outages":
|
|
logging.info("Inject zone outages")
|
|
zone_outages.run(scenarios_list, config, wait_duration)
|
|
|
|
# Application outages
|
|
elif scenario_type == "application_outages":
|
|
logging.info("Injecting application outage")
|
|
application_outage.run(
|
|
scenarios_list, config, wait_duration
|
|
)
|
|
|
|
# PVC scenarios
|
|
elif scenario_type == "pvc_scenarios":
|
|
logging.info("Running PVC scenario")
|
|
pvc_scenario.run(scenarios_list, config)
|
|
|
|
# Network scenarios
|
|
elif scenario_type == "network_chaos":
|
|
logging.info("Running Network Chaos")
|
|
network_chaos.run(scenarios_list, config, wait_duration)
|
|
|
|
# Check for critical alerts when enabled
|
|
if check_critical_alerts:
|
|
logging.info("Checking for critical alerts firing post choas")
|
|
promcli.initialize_prom_client(distribution, prometheus_url, prometheus_bearer_token)
|
|
query = r"""ALERTS{severity="critical"}"""
|
|
critical_alerts = promcli.process_prom_query(query)
|
|
critical_alerts_count = len(critical_alerts)
|
|
if critical_alerts_count > 0:
|
|
logging.error("Critical alerts are firing: %s", critical_alerts)
|
|
logging.error("Please check, exiting")
|
|
sys.exit(1)
|
|
else:
|
|
logging.info("No critical alerts are firing!!")
|
|
|
|
iteration += 1
|
|
logging.info("")
|
|
|
|
# Capture the end time
|
|
end_time = int(time.time())
|
|
|
|
# Capture metrics for the run
|
|
if capture_metrics:
|
|
logging.info("Capturing metrics")
|
|
kube_burner.setup(kube_burner_url)
|
|
kube_burner.scrape_metrics(
|
|
distribution,
|
|
run_uuid,
|
|
prometheus_url,
|
|
prometheus_bearer_token,
|
|
start_time,
|
|
end_time,
|
|
config_path,
|
|
metrics_profile,
|
|
)
|
|
|
|
# Check for the alerts specified
|
|
if enable_alerts:
|
|
logging.info("Alerts checking is enabled")
|
|
kube_burner.setup(kube_burner_url)
|
|
if alert_profile:
|
|
kube_burner.alerts(
|
|
distribution,
|
|
prometheus_url,
|
|
prometheus_bearer_token,
|
|
start_time,
|
|
end_time,
|
|
alert_profile,
|
|
)
|
|
else:
|
|
logging.error("Alert profile is not defined")
|
|
sys.exit(1)
|
|
|
|
if litmus_uninstall and litmus_installed:
|
|
common_litmus.delete_chaos(litmus_namespace)
|
|
common_litmus.delete_chaos_experiments(litmus_namespace)
|
|
common_litmus.uninstall_litmus(litmus_version, litmus_namespace)
|
|
|
|
if failed_post_scenarios:
|
|
logging.error(
|
|
"Post scenarios are still failing at the end of all iterations"
|
|
)
|
|
sys.exit(1)
|
|
|
|
run_dir = os.getcwd() + "/kraken.report"
|
|
logging.info(
|
|
"Successfully finished running Kraken. UUID for the run: "
|
|
"%s. Report generated at %s. Exiting" % (run_uuid, run_dir)
|
|
)
|
|
else:
|
|
logging.error("Cannot find a config at %s, please check" % (cfg))
|
|
sys.exit(1)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# Initialize the parser to read the config
|
|
parser = optparse.OptionParser()
|
|
parser.add_option(
|
|
"-c",
|
|
"--config",
|
|
dest="cfg",
|
|
help="config location",
|
|
default="config/config.yaml",
|
|
)
|
|
(options, args) = parser.parse_args()
|
|
logging.basicConfig(
|
|
level=logging.INFO,
|
|
format="%(asctime)s [%(levelname)s] %(message)s",
|
|
handlers=[
|
|
logging.FileHandler("kraken.report", mode="w"),
|
|
logging.StreamHandler(),
|
|
],
|
|
)
|
|
if options.cfg is None:
|
|
logging.error("Please check if you have passed the config")
|
|
sys.exit(1)
|
|
else:
|
|
main(options.cfg)
|