Files
hansken-python-workshop/06_data_word_cloud.py
2024-10-10 14:29:24 +02:00

51 lines
1.7 KiB
Python

# %% [python]
import io
from wordcloud import WordCloud, STOPWORDS
import matplotlib.pyplot as plt
from hansken.connect import connect_project
hansken_host = ''
hansken_project = '5ee273fd-0978-4a0a-b8b0-2af2f8479214'
context = connect_project(endpoint=f'http://{hansken_host}:9091/gatekeeper/',
project=hansken_project,
keystore=f'http://{hansken_host}:9090/keystore/',
interactive=True)
# Hansken SDK running on localhost
# context = connect_project(endpoint='http://localhost:9091/gatekeeper/',
# project='d42bd9c3-63db-474c-a36f-b87e1eb9e2d3',
# keystore='http://localhost:9090/keystore/')
# %% [markdown]
### Collect words
# The cell below searches for all `document` traces in the current project. Most documents contain a 'text' data stream which contains text extracted from the document.
# If this data is available, the words are added to the wordcloud.
# %% [python]
words = ""
with context.search("type:document") as search_result:
for trace in search_result:
# verify text data stream is available
if "text" in trace.data_types:
with io.TextIOWrapper(trace.open(stream='text'), encoding="utf-8", errors="ignore") as content:
words += content.read()
words
# %% [markdown]
### Draw Wordcloud
# The cell below draws a wordcloud using the words occurring in the messages. `STOPWORDS` is used to ignore common english words.
# %% [python]
# draw word cloud
wc = WordCloud(stopwords=STOPWORDS, width=600, height=400).generate(words)
plt.figure(figsize=(20, 6))
plt.imshow(wc, interpolation="bilinear")
plt.axis("off")
plt.show()
# %%